Skip to main content
Log in

Capsis: an open software framework and community for forest growth modelling

  • Original Paper
  • Published:
Annals of Forest Science Aims and scope Submit manuscript

Abstract

Context

Forest scientists build models to simulate stand growth and forests dynamics. Dedicated computer tools are often developed to implement these models in order to run silvicultural scenarios and explore simulation results.

Aims

Our objective was to encourage software reuse and simplify model implementation.

Methods

The scheme was to develop a framework and methodology allowing to simplify the implementation, integration, simulation and comparison of forest models by providing a set of common and standard tools.

Results

Capsis provides an open and modular software architecture based on various components, allowing to run forest growth simulations and display the results. The benefits of this framework are shown with the Samsara2 model, an individual-based and spatialised tree model. Capsis has been used successfully in many similar projects. In addition, the Capsis methodology defines how developers, modellers and end-users may interact.

Conclusion

The Capsis framework facilitates collaborative and shared software development. Moreover, it is a powerful way to support scientific animation in the frame of forest science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ancelin P, Courbaud B, Fourcaud T (2004) Developing an individual tree-based mechanical model to predict wind damage within forest stands. For Ecol Manag 203:101–121

    Article  Google Scholar 

  • Argent RM (2004) An overview of model integration for environmental applications—components, frameworks and semantics. Environ Model Softw 19:219–234

    Article  Google Scholar 

  • Argent RM, Rizzoli AE (2004) Development of multi-framework model components. Complexity and integrated resources management. In: Pahl-Wostl C, Schmidt S, Rizzoli AE, Jakeman AJ (eds) Transactions of the 2nd biennial meeting of the international environmental modelling and software society: complexity and integrated resources management (1). International Environmental Modelling and Software Society, ISBN 88-900787-1-5, pp 365–370

  • Argent RM, Voinov A, Maxwell T, Cuddy SM, Rahman JM, Seaton S, Vertessy RA, Braddock RD (2006) Comparing modelling frameworks—a workshop approach. Environ Model Softw 21:895–910

    Article  Google Scholar 

  • Barczi J, Rey H, Caraglio Y, De Reffye P, Barthélémy D, Qiao XD, Fourcaud T (2007) AmapSim: a structural whole-plant simulator based on botanical knowledge and designed to host external functional models. Ann Bot London 101:1125–1138

    Article  Google Scholar 

  • Brisson N, Ruget F, Gate P, Lorgeou J, Nicoullaud B, Tayot X, Plenet D, Jeuffroy MH, Bouthier A, Ripoche D, Mary B, Justes E (2002) STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agron Sustain Dev 22:69–92

    Google Scholar 

  • Chabaud L, Nicolas L (2009) Guide des sylvicultures. Pineraies des plaines du centre et du Nord-Ouest. ONF, Paris

  • Coates KD, Canham CD, Beaudet M, Sachs DL, Messier C (2003) Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests. For Ecol Manag 186:297–310

    Article  Google Scholar 

  • Cordonnier T, Courbaud B, Franc A (2006) Permanence of stability properties and protection efficiency in mountain spruce stands. In: Natural disturbance-based silviculture—managing for complexity, IUFRO 1.05 Conference, Rouyn-Noranda, Québec, 14–18 May 2006, ISBN-10: 2-923064-17-8

  • Courbaud B, Goreaud F, Dreyfus P, Bonnet FR (2001) Evaluating thinning strategies using a tree distance dependent growth model: some examples based on the CAPSIS software “uneven-aged spruce forests” module. For Ecol Manag 145:15–28

    Article  Google Scholar 

  • Courbaud B, de Coligny F, Cordonnier T (2003) Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope. Agric For Meteorol 116:1–18

    Article  Google Scholar 

  • Cucchi V, Meredieu C, Stokes A, de Coligny F, Suarez J, Gardiner BA (2005) Modelling the windthrow risk for simulated forest stands of Maritime pine (Pinus pinaster Ait.). For Ecol Manag 213:184–196

    Article  Google Scholar 

  • de Coligny F, Meredieu C, Labbé T, Vallet P, Dreyfus P (2005) Using Capsis for connection with wood quality. In: Proceedings of the 5th IUFRO workshop on connection between forest resources and wood quality: Modelling Approaches and Simulation Software. Waiheke Island, New Zealand, 20–27 November 2005

  • Degenne P, Lo Seen D, Parigot D, Forax R, Tran A, Ait Lahcen A, Cure O, Jeansoulin R (2009) Design of a domain specific language for modelling processes in landscapes. Ecol Model 220:3527–3535

    Article  Google Scholar 

  • Dreyfus P (2008) Dynamiques du Sapin, du Hêtre et des Pins dans l’arrière-pays méditerranéen: de la modélisation à l’aide à la gestion. Rev For Fr 60:233–249

    Google Scholar 

  • Dreyfus P, Bonnet FR (1995) CAPSIS, logiciel de simulation de conduites sylvicoles. Rev For Fr 47:111–115

    Article  Google Scholar 

  • Dreyfus P, Bonnet FR (1997) Capsis (Computer-Aided Projection of Strategies In Silviculture): an interactive simulation and comparison tool for tree and stand growth, silvicultural treatments and timber assortment. In: Nepveu G (ed) Proceedings of the second IUFRO WP S5.01.04 workshop: connection between silviculture and wood quality through modelling approaches and simulation software, pp 194–202

  • Dreyfus P, Hamza N, Pignard G (2001) Construction de modèles de croissance pour les peuplements réguliers à partir des données dendrométriques de l’IFN. Rev For Fr 53:434–441

    Google Scholar 

  • Dreyfus P, Pichot C, de Coligny F, Gourlet-Fleury S, Cornu G, Jésel S, Dessard H, Oddou-Muratorio S, Gerber S, Caron H, Latouche-Hallé C, Lefèvre F, Courbet F, Seynave I (2005) Couplage de modèles de flux de gènes et de modèles de dynamique forestière. Un dialogue pour la diversité génétique—Actes du 5ème colloque national BRG, Lyon, 3–5 Novembre 2004, Les Actes du BRG n°5, ISBN 2-908447-33-9, pp 231–250

  • Duvall P, Matyas S, Glover A (2007) Continuous integration: improving software quality and reducing risk. Free Software Foundation, Inc. 1999. Addison-Wesley, Reading

  • Gardiner BA, Quine CP (2000) Management of forests to reduce the risk of abiotic damage—a review with particular reference to the effects of strong winds. For Ecol Manag 135:261–277

    Article  Google Scholar 

  • Gauquelin X, Courbeaud B (2006) Guide de sylviculture des forêts de montagne—Alpes du Nord françaises. Cemagref—CRPF Rhône-Alpes—Office National des Forêts

  • Gauquelin X, Courbaud B, Fay J, Berger F, Mermin E (2008) Conduite de peuplements mélangés en forêt de montagne: exemple d’un transfert chercheurs-gestionnaires. Rev For Fr LX:207–214

    Google Scholar 

  • Goreaud F, de Coligny F, Courbaud B, Dhôte JF, Dreyfus P, Pérot T (2005) La modélisation: un outil pour la gestion et l’aménagement en forêt. VertigO 6:12

    Google Scholar 

  • Goreaud F, Alvarez I, Courbaud B, de Coligny F (2006) Long-term influence of the spatial structure of an initial state on the dynamics of a forest growth model: a simulation study using the Capsis platform. Simulation 82:475–495

    Article  Google Scholar 

  • Hillyer C, Bolte J, van Evert F, Lamaker A (2003) The ModCom modular simulation system. Eur J Agron 18:333–343

    Article  Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288

    Article  Google Scholar 

  • Lacerte V, Larocque GR, Woods M, Parton WJ, Penner M (2006) Calibration of the forest vegetation simulator (FVS) model for the main forest species of Ontario, Canada. Ecol Model 199:336–349

    Article  Google Scholar 

  • Le Moguédec G, Dhôte JF (2011) “Fagacées”: a tree-centered growth and yield model for Sessile oak (Quercus petraea L.). Ann For Sci. doi:10.1007/s13595-011-0157-0

  • Lemoine B (1991) Growth and yield of maritime pine (Pinus pinaster Ait): the average dominant tree of the stand. Ann Sci For 48:593–611

    Article  Google Scholar 

  • Lorek H, Sonnenschein M (1999) Modelling and simulation software to support individual-based ecological modelling. Ecol Model 115:199–216

    Article  Google Scholar 

  • Meredieu C, Dreyfus P, Cucchi C, Saint-André L, Perret S, Deleuze C, Dhôte JF, de Coligny F (2009) Utilisation du logiciel Capsis pour la gestion forestière. Forêt-entreprise 186:32–36

    Google Scholar 

  • Monserud RA, Sterba H (1996) A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. For Ecol Manag 80:57–80

    Article  Google Scholar 

  • Moore RV, Tindall CI (2005) An overview of the open modelling interface and environment (the OpenMI). Environ Sci Policy 8:279–286

    Article  Google Scholar 

  • Muetzelfeldt R, Massheder J (2003) The Simile visual modelling environment. Eur J Agron 18:345–358

    Article  Google Scholar 

  • Muys B, Hynynen J, Palahí M, Lexer MJ, Fabrika M, Pretzsch H, Gillet F, Briceño E, Nabuurs GJ, Kint V (2011) Simulation tools for decision support to adaptive forest management in Europe. Systems 19:96–99

    Google Scholar 

  • Nguyen DZ, Ricken M, Wong S (2004) Design patterns for marine biology simulation. In: SIGCSE’04: Proceedings of the 35th SIGCSE technical symposium on computer science education. ACM, New York, ISBN: 1-58113-798-2, pp 467–471

  • Orazio C, Meredieu C, Saint-André L, de Coligny F (2002) Building bridges between modellers and end-users. A case study of Southern Europe. In: Colloque IUFRO, IEFC, ISA on incorporating forest growth models into decision-support tools for sustainable forest management, Lisbon, Portugal, 6–8 June 2002

  • Ottorini JM (1991) Growth and development of individual Douglas-fir in stands for applications to simulation in silviculture. Ann For Sci 48:651–666

    Article  Google Scholar 

  • Papajorgji P (2005) A plug and play approach for developing environmental models. Environ Model Softw 20:1353–1357

    Article  Google Scholar 

  • Porté A, Bartelink HH (2002) Modelling mixed forest growth: a review of models for forest management. Ecol Model 150:141–188

    Article  Google Scholar 

  • Pradal C, Dufour-Kowalski S, Boudon F, Fournier C, Godin C (2008) OpenAlea: a visual programming and component-based software platform for plant modeling. Funct Plant Biol 35:751–760

    Article  Google Scholar 

  • Pretzsch H, Biber P, Dursk J (2002) The single tree based stand simulator SILVA: construction, application and evaluation. For Ecol Manag 162:3–21

    Article  Google Scholar 

  • Quesnel G, Duboz R, Ramat E (2009) The virtual laboratory environment—an operational framework for multi-modelling, simulation and analysis of complex dynamical systems. Simul Model Pract Th 17:641–653

    Article  Google Scholar 

  • Rahman JM, Seaton SP, Perraud JM, Hotham H, Verrelli DI, Coleman JR (2003) It’s TIME for a new environmental modelling framework. In: MODSIM 2004 International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand Inc, Townsville, Australia, pp 1727–1732

    Google Scholar 

  • Rahman JM, Seaton SP, Cuddy SM (2004) Making frameworks more useable: using model introspection and metadata to develop model processing tools. Environ Model Softw 19:275–284

    Article  Google Scholar 

  • Rasinmki J, Mkinen A, Kalliovirta J (2009) SIMO: an adaptable simulation framework for multiscale forest resource data. Comput Electron Agric 66:76–84

    Article  Google Scholar 

  • Raymond ES (1999) The Cathedral and the Bazaar. O’Reilly & Associates, Inc., Sebastopol, CA

    Google Scholar 

  • Rigolot E, de Coligny F, Dreyfus P, Dupuy JL, Lecomte I, Pezzatti B, Vigy O, Pimont F (2010) Fuel Manager: a vegetation assessment and manipulation software for wildfire modelling. In: Viegas DX (Ed) ProcEEDINGS of the 6th international conference on forest fire research, University of Coimbra, Portugal. 12 pp

  • Roxburgh SH, Davies ID (2006) COINS: an integrative modelling shell for carbon accounting and general ecological analysis. Environ Model Softw 21:359–374

    Article  Google Scholar 

  • Sequeira RA, Olson RL, McKinion JM (1997) Implementing generic, object-oriented models in biology. Ecol Model 94:17–31

    Article  Google Scholar 

  • Tang S, Meng CH, Meng FR, Wang YH (1994) A growth and self-thinning model for pure even-age stands: theory and applications. For Ecol Manag 70:67–73

    Article  Google Scholar 

  • Vieilledent G (2009) Structurer l'incertitude et la variabilité dans les modèles de dynamique forestière. Application à la coexistence du Sapin et de l'Epicéa en forêt de montagne. Thèse, AgroParisTech-ENGREF, Nancy

  • Vieilledent G, Courbaud B, Kunstler G, Dhôte JF (2010a) Mortality of Silver fir and Norway spruce in the western Alps—a semi-parametric approach combining size-dependent and growth-dependent mortality. Ann For Sci 67:305

    Article  Google Scholar 

  • Vieilledent G, Courbaud B, Kunstler G, Dhôte JF, Clark JS (2010b) Individual variability in tree allometries determines light resource allocation in forest ecosystems—a hierarchical Bayes approach. Oecologia 163:759–773

    Article  PubMed  Google Scholar 

  • Vincent G, de Foresta H (1998) A three dimensional dynamic model of Damar agroforest in Sumatra (Indonesia). In: Enriquez GL, Wasrin UR and Murdiyarso D (eds) Tropical forest dynamics. Biotrop Special Publication No. 60. pp 139–157

  • Wernsdörfer H, Caron H, Gerber S, Cornu G, Rossi V, Mortier F, Gourlet-Fleury S (2009) Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes. Conserv Genet. doi:10.1007/s10592-009-9983-0

Download references

Acknowledgements

The success of Capsis comes from an active collaboration of the different members of the community around the developers and the authors would like to thank them for their diverse and helpful contributions. Special thanks to F.R. Bonnet for giving birth and initial success to Capsis as its first computer engineer and to H. Oswald (INRA) for his efficient work in overcoming initial administrative concerns.

Funding

Financial support to the development of the Capsis framework has been provided initially by the French Ministry in charge of forests, by INRA, ONF and AFOCEL, and, from then on, by INRA, namely in the form of permanent staff in charge of this development and of animating the collaborative network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François de Coligny.

Additional information

Handling Editor: Daniel Auclair

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Online Resource 1

Capsis model list with short description, contact persons and integration starting date. An up-to-date list can be found at http://www.inra.fr/capsis/models (ODT 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufour-Kowalski, S., Courbaud, B., Dreyfus, P. et al. Capsis: an open software framework and community for forest growth modelling. Annals of Forest Science 69, 221–233 (2012). https://doi.org/10.1007/s13595-011-0140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13595-011-0140-9

Keywords

Navigation