Skip to main content
Log in

Optimized preparation of ACE-inhibitory and antioxidative whey protein hydrolysate using response surface method

利用响应面法优化乳清蛋白水解物制备血管紧张素转化酶(ACE)抑制剂和抗氧化活性肽

  • Original Paper
  • Published:
Dairy Science & Technology

Abstract

The main aim of the present study was to optimize the hydrolysis conditions of whey protein isolate digested by a protease preparation from Aspergilus oryzae through response surface method (RSM) in order to achieve the maximum angiotensin I-converting enzyme (ACE)-inhibitory activity and antioxidant properties. The effects of hydrolysis conditions including time (2, 13, 24, 35, and 46 h), temperature (40, 45, 50, 55, and 60 °C) and pH (6, 6.5, 7, 7.5, and 8) were investigated on the bioactivity of whey protein hydrolysates. Each process parameter emerged to have a dual effect on bioactivity; that is, increase in all variables promoted bioactive peptide generation through facilitating enzyme access to the primary protein sequence by partial unfolding of the compact globular assemblies of whey proteins. However, prolonged digestion at high temperatures and alkaline pH were concomitant with decreased bioactivity which are attributed to hydrolysate aggregation and splitting of bioactive peptides into biologically inactive counterparts, respectively. Nonetheless, some discrepancies were observed between the trend of ACE-inhibitory activity and that of antioxidant activity changes which was explained in light of their general characteristics. RSM efficiently identified the critical levels of each variable to obtain maximum bioactivity. It was shown that hydrolysate prepared at 56.54 °C and pH 6.04 resulting from digestion for 3.89 h exerted 74% ACE-inhibitory activity, 666.31 μM trolox equivalent/mg antioxidant activity, and 14.03% hydrolysis degree.

摘要:

本文采用响应面法对米曲霉蛋白酶水解乳清分离蛋白的条件进行优化,以取得最大的血管紧张素转化酶(ACE)抑制活性和抗氧化特性。研究了水解时间(2, 13, 24, 35 和46 h)、温度(40, 45, 50. 55 和 60 °C) 和 pH (6, 6.5, 7, 7.5 和8)对乳清蛋白水解物生物活性的影响。每个工艺参数对生物活性会产生双重影响,也就是增加所有变量,通过将致密的球状乳清蛋白部分折叠解开使酶进入一级蛋白序列,从而促进生物活性肽的产生。然而,在高温和碱性pH条件下,延长水解时间会降低水解物的生物活性,主要原因是随着水解时间的延长,水解物聚集以及生物活性肽裂解成没有生物活性的物质。虽然如此,血管紧张素转化酶(ACE)抑制性和抗氧化活性会出现不一致,这由于两者的特性不同。响应面法(RSM)能够有效地确定并获得最大生物活性的每个变量的水平。实验结果表明:在56.54 °C,pH 6.04 水解时间为3.89 h得到的水解物具有74%的血管紧张素转化酶(ACE)抑制活性,等效抗氧化活性为666.31 μM,水解度为14.03%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alder-Nissen J (1986) Enzymaic hydrolysis of food proteins. Elsevier, New York

    Google Scholar 

  • Costa EL, Gontijo JAR, Netto FM (2007) Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. Int Dairy J 17:632–640

    Article  Google Scholar 

  • Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648

    Article  CAS  Google Scholar 

  • Fitzsimon SM, Mulvihill DM, Morris ER (2007) Denaturation and aggregation process in thermal gelation. Food Hydrocolloid 21:638–644

    Article  Google Scholar 

  • Fluegel SM, Shultz TD, Powers JR, Clerk S, Barbosa-Leiker C, Wright BR, Freson TS, Fluegel HL, Minch JD, Schwarzkopf LK, Miller AJ (2010) Whey beverages decrease blood pressure in prehypertensive and hypertensive young men and women. Int Dairy J 20:753–760

    Article  CAS  Google Scholar 

  • Fuente MA, Singh H, Hemar Y (2002) Recent advances in the characterization of heat-induced aggregates and intermediates of whey proteins. Trends Food Sci Tech 13:262–274

    Article  Google Scholar 

  • Giroux H, Britten M (2004) Heat treatment of whey proteins in the presence of anionic surfactants. Food hydrocolloid 18:685–692

    Article  CAS  Google Scholar 

  • Guo Y, Pan D, Tanokura M (2009) Optimisation of hydrolysis conditions for the production of the angiotensin-І-converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chem 114:328–333

    Article  CAS  Google Scholar 

  • Hernandez-Ledesma B, Recio I, Ramos M, Amigo L (2002) Preparation of ovine and caprine β-lactoglobulin hydrolysates with ACE-inhibitory activity: identification of active peptides from caprine β-lactoglobulin hydrolysed with thermolysin. Int Dairy J 12:805–812

    Article  CAS  Google Scholar 

  • Hernández-Ledesma B, Ramos M, Gómez-Ruiz JA (2011) Bioactive components of ovine and caprine cheese whey. Small Ruminant Res 101:196–204

    Article  Google Scholar 

  • Ju ZY, Kilara A (1998) Gelation of hydrolysates of a whey protein isolate induced by heat, protease, salts and acid. Int Dairy J 8:303–309

    Article  Google Scholar 

  • Kim SB, Seo IS, Khan MA, Ki KS, Nam MS, Kim HS (2007) Separation of iron-binding protein from whey through enzymatic hydrolysis. Int Dairy J 17:625–631

    Article  CAS  Google Scholar 

  • Korhonen H (2009) Milk-derived bioactive peptides: from science to application. J Funct Food 1:177–187

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto-Lepällä A, Rantamäki P, Tupasela T (1998) Impact of processing on bioactive proteins and peptides. Trend Food Sci Tech 9:307–319

    Article  CAS  Google Scholar 

  • Madadlou A, Emam-Djomeh Z, Mousavi ME, Ehsani M, Javanmard M, Sheehan D (2009a) Response surface optimization of an artificial neural network for predicting the size of re-assembled casein micelles. Comput Electron Agric 68:216–221

    Article  Google Scholar 

  • Madadlou A, Mousavi ME, Emam-Djomeh Z, Sheehan D, Ehsani M (2009b) Alkaline pH does not disrupt re-assembled casein micelles. Food Chem 116:929–932

    Article  CAS  Google Scholar 

  • Madadlou A, Iacopino D, Sheehan D, Emam-Djomeh Z, Mousavi ME (2010) Enhanced thermal and ultrasonic stability of a fungal protease encapsulated within biomimetically generated silicate nanospheres. BBA-Gen Sub 1800:459–465

    Article  CAS  Google Scholar 

  • Madadlou A, Sheehan D, Emam-Djomeh Z, Mousavi ME (2011) Ultrasound-assisted generation of ACE-inhibitory peptides from casein hydrolyzed with nanoencapsulated protease. J Sci Food Agric 91:2112–2116

    Article  CAS  Google Scholar 

  • Madureira AR, Tavares T, Gomesa AM, Pintado M, Malcata F (2010) Invited review: physiological properties of bioactive peptides obtained from whey proteins. J Dairy Sci 93:437–455

    Article  CAS  Google Scholar 

  • Mizuno S, Nishimura S, Matsuura K, Gotou T, Yamamoto N (2004) Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease. J Dairy Sci 87:3183–3188

    Article  CAS  Google Scholar 

  • Nelson D (2005) Lehninger principles of biochemistry. Amazon, New York

    Google Scholar 

  • Otte J, Shalabi S, Zakora M, Pripp A, El-Shabrawi S (2007) Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates: effect of substrate, enzyme and time of hydrolysis. Int Dairy J 17:488–503

    Article  CAS  Google Scholar 

  • Peña-Ramos EA, Xiong YL (2001) Antioxidative activity of whey protein hydrolysates in a liposomal system. J Dairy Sci 84:2577–2583

    Article  Google Scholar 

  • Periago MJ, Vidal ML, Ros G, Rincón F, Martínez C, López G, Rodrigo J, Martínez I (1998) Influence of enzymatic treatment on the nutritional and functional properties of pea flour. Food Chem 63:71–78

    Article  CAS  Google Scholar 

  • Pihlanto-Leppälä A (2001) Bioactive peptides derived from bovine whey proteins: opioid and ACE-inhibitory peptides. Trends Food Sci Tech 11:347–356

    Article  Google Scholar 

  • Pihlanto-Leppälä A, Koskinen P, Pillola K, Tupasela T, Korhonen H (2000) Angiotensin-І-converting enzyme inhibitory properties of whey protein digest: concentration and characterisation of active peptides. J Dairy Res 67:53–64

    Article  Google Scholar 

  • Ranathunga S, Rajapakse KS (2006) Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster). Eur Food Res Technol 222:310–315

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  Google Scholar 

  • Rho SJ, Lee JS, Chung YI, Kim YW, Lee HG (2009) Purification and identification of an angiotensin І-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem 44:490–493

    Article  CAS  Google Scholar 

  • Samaranayaka AGP, Li-Chen ECY (2011) Food-derived peptidic antioxidants: a review of their production, assessment, and potential application. J Funct Food 3:229–254

    Article  CAS  Google Scholar 

  • Sinha R, Radha C, Prakash J, Kaulm P (2007) Whey protein hydrolysate: functional properties, nutritional quality and utilization in beverage formulation. Food Chem 101:1484–1491

    Article  CAS  Google Scholar 

  • Smithers GW (2008) Whey and whey proteins—from gutter-to-gold. Int Dairy J 18:695–704

    Article  CAS  Google Scholar 

  • Ven CVD, Gruppen H, Bont BAD, Vorgan GJA (2002) Optimization of the angiotensin converting enzyme inhabitation by whey protein hydrolysates using response surface methodology. Int Dairy J 12:813–820

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank the Iran National Scientific Foundation (INSF) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashkan Madadlou.

About this article

Cite this article

Goudarzi, M., Madadlou, A., Mousavi, M.E. et al. Optimized preparation of ACE-inhibitory and antioxidative whey protein hydrolysate using response surface method. Dairy Sci. & Technol. 92, 641–653 (2012). https://doi.org/10.1007/s13594-012-0081-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13594-012-0081-6

Keywords

关键词

Navigation