Skip to main content

Advertisement

Log in

Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Sesuvium portulacastrum L. is a pioneer plant species, used for sand-dune fixation, desalination and phytoremediation along coastal regions. The plant tolerates abiotic constraints such as salinity, drought and toxic metals. S. portulacastrum is also used as a vegetable, fodder for domestic animals and as an ornamental plant. S. portulacastrum grows luxuriantly at 100–400 mM NaCl concentrations. It further grows at severe salinity of 1000 mM NaCl without any toxic symptoms on the leaves. The plant also produces 20-hydroxyecdysone, an insect molting hormone for use in sericulture industry. This review analyses research undertaken during last two to three decades in physiology, biochemistry, molecular biology and biotechnology, to unravel the plasticity of the plant tolerance mechanism. Physiological and biochemical studies evidence the tolerance potential of the plant to abiotic stresses and reveal molecular mechanisms of stress tolerance. Biotechnological studies show the efficacy of the plant to produce pharmaceuticals. Large-scale multiplication of S. portulacastrum in the arid and semiarid regions should reduce the load of saline salts and heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

20E:

20-Hydroxyecdysone

ADP:

Adenosine 5′-diphosphate

APX:

Ascorbate peroxidase

ASC:

Ascorbate

ATP:

Adenosine 5′-triphosphate

CAT:

Catalase

DHA:

Dehydroascorbate

dS:

DesiSiemens

FBA:

Fructose-1,6-bisphosphate aldolase

GSH:

Glutathione (reduced)

GSSG:

Glutathione (oxidised)

KUE:

Potassium use efficiency

MPa:

MegaPascal

MS:

Murashige and Skoog basal medium

NADH:

Nicotinamide adenine dinucleotide reduced

NADME:

NAD-mallic enzyme

NADP:

Nicotinamide adenine dinucleotide phosphate

NADPH:

Nicotinamide adenine dinucleotide phosphate Reduced

PC3:

Phytochelatin 3

PS:

Photosystem

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SQDG:

Sulphoquinovosyldiacylglycerol

SSH:

Suppressive subtractive hybridisation

References

  • Adrian-Romero MS, Wilson J, Blunden G, Yang MH, Carabot-Cuervo A, Bashir AK (1998) Betaines in coastal plants. Biochem System Ecol 26:535–543. doi:10.1016/S0305-1978(98)00013-1

    Article  CAS  Google Scholar 

  • Agoramoorthy G, Fu-An C, Venkatesalu V, Daih-Hu AK, Po-Chuen S (2008) Evaluation of antioxidant polyphenols from selected mangrove plants of India. Asian J Chem 20(2):1311–1322

    CAS  Google Scholar 

  • Anonymous (2009) http://www.aluka.org/action/showMetadata.

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16. doi:10.1016/j.plantsci.2003.10.024

    Article  CAS  Google Scholar 

  • Aspe H, Gussarsson M, Adalsteinson S, Lense’n P (1994) Control of potassium influx in roots of birch (Betula pendula) seedlings exposed to cadmium. J Expt Bot 45:1823–1827. doi:10.1093/jxb/45.12.1823

    Article  Google Scholar 

  • Attipali RR, Kolluru VC, Munusamy V (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202. doi:10.1016/j.jplph.2004.01.013

    Article  CAS  Google Scholar 

  • Balakrishnan V, Venkatesan K, Ravindran KC (2007) The influence of halophytic compost, farmyard manure and phosphobacteria on soil microflora and enzyme activities. Plant Soil Environ 53:186–192

    CAS  Google Scholar 

  • Balakrishnan V, Venkatesan K, Sanjiviraja K, Indrajit A, Ravindran KC (2010) Application of an organic halophytic manure on yield characteristics of Arachis hypogaea Linn. Internat J Eng Sci Technol 2:134–143. doi:59104-106459-1-PB

    Google Scholar 

  • Bandara BMR, Jayasinghe L, Karunaratne V, Wannigama GP, Bokel M, Kraus W, Sotheeswaran S (1989) Ecdysterone from stem of Diploclisia glaucescens. Phytochem 28:1073–1075. doi:10.1016/0031-9422(89)80185-2

    Article  CAS  Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wet Ecol Manag 10:421–452. doi:10.1023/A:1021397624349

    Article  CAS  Google Scholar 

  • Bathori M (2002) Phytoecdysteroids effects on mammals, isolation and analysis. Mini-Rev Med Chem 2:285–293. doi:10.2174/1389557023406269

    Article  PubMed  CAS  Google Scholar 

  • Bhosale LJ, Shinde LS (1983a) Nitrate reductase activity in mangroves. In: All India symposium on marine plants, their biology, chemistry and utilization, Dona Paula, Goa, October 30–November 1, 1983

  • Bhosale LJ, Shinde LS (1983b) Photosynthetic products and enzymes in a mangrove Aefgiceras corniculatum and a halophyte Sesuvium portulacastrum. Photosynthetica (Prague) 7(1):59–63

    Google Scholar 

  • Binzel M, Ratajczak R (2002) Function of membrane transport systems under salinity: tonoplast. In: Lauchli A, Luttge U (eds), Salinity: environment plants molecules. Kluwer Academic, New York pp 423–449

  • Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434. doi:10.1016/S0955-0674(00)00112-5

    Article  PubMed  CAS  Google Scholar 

  • Blumwald E, Grover A, Good AG (2004) Breeding for abiotic stress resistance: challenges and opportunities. In: “New directions for a diverse planet”. Proceedings of the 4th International Crop Science Congress, Brisbane, Australia

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97. doi:10.1016/0167-7799(96)80929-2

    Article  CAS  Google Scholar 

  • Chandrasekaran M, Senthilkumar A, Venkatesalu V (2011) Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur Rev Med Pharmacol Sci 15:775–80

    PubMed  CAS  Google Scholar 

  • Chen K-M, Gong GH-J, Chen CG-C, Wang WS-M, Zhang ZC-L (2004) Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. Journal of Plant Growth Regulation 23:20–28. doi:10.1007/s00344-003-0053-4

    Article  CAS  Google Scholar 

  • Chou WS, Lu HS (1980) Growth regulation and silk production in Bombyx mori L., from phytogenous ecdysteroids. In: Hoffman JA (ed) Progress in ecdysone research. Elsevier, Amsterdam, pp 281–297

    Google Scholar 

  • Cushman JC (2001) Osmoregulation in plants: implications for agriculture. Amer Zool 41:758–769. doi:10.1093/icb/41.4.758

    Article  CAS  Google Scholar 

  • Cushman JC (2003) Functional genomics of plant abiotic stress tolerance. In: Prade RA, Bohnert HJ (eds) Genomics of Plants and Fungi. Marcel Dekker, Inc, New York, pp 315–357

    Google Scholar 

  • Daniells IG, Holland JF, Young RR, Alston CL, Bernardi AL (2001) Relationship between yield of grain sorghum (Sorghum bicolor) and soil salinity under field conditions. Aust J Plant Exp Agri 41:211–217

    Article  Google Scholar 

  • Daoud S, Harrouni MC, Bengueddour R (2001) Biomass production and ion composition of some halophytes irrigated with different seawater dilutions. In: First International conference on saltwater intrusion and coastal aquifers—monitoring, modeling and management. Essaouira, Morocco, April 23–25

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223. doi:10.1046/j.1365-313X.1993.04020215.x

    Article  CAS  Google Scholar 

  • Deuschle K, Funck D, Hellmann H, Daeschner K, Binder S, Frommer WB (2001) A nuclear gene encoding mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J 27:345–356. doi:10.1046/j.1365-313X.2001.01101.x

    Article  PubMed  CAS  Google Scholar 

  • Dinan L (2001) Phytoecdysteroids: biological aspects. Photochem 57:325–339. doi:10.1016/S0031-9422(01)00078-4

    Article  CAS  Google Scholar 

  • Dinan L, Lafont R (2006) Effects and applications of arthropod steroid hormones (ecdysteroids) in mammals. J Endocrinol 191:1–8. doi:10.1677/joe.1.06900

    Article  PubMed  CAS  Google Scholar 

  • Errabii T, Gandanou CB, Essalmani H, Abrini J, Idamor M, Senhaji NS (2007) Effect of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiol Plant 29:95–102. doi:10.1007/s11738-006-0006-1

    Article  CAS  Google Scholar 

  • Fan W, Zhang Z, Zhang Y (2009) Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Rep 28(6):975–984. doi:10.1007/s00299-009-0702-6

    Article  PubMed  CAS  Google Scholar 

  • FAO (2008) FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963. doi:10.1111/j.1469-8137.2008.02531.x

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Ann Rev Plant Physiol 28:89–121. doi:10.1146/annurev.pp.28.060177.000513

    Article  CAS  Google Scholar 

  • Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162(10):1133–1140. doi:10.1016/j.jplph.2004.11.011

    Article  PubMed  CAS  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007a) Effect of Cd2+ on K+, Ca+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembrynathemum crystallinum: consequences on growth. Chemosphere 67:72–79. doi:10.1016/j.chemosphere.2006.09.064

    Article  PubMed  CAS  Google Scholar 

  • Ghnaya T, Slama I, Messedi D, Grignon C, Ghorbel MH, Abdelly C (2007b) Cd-induced growth reduction in the halophyte Sesuvium portulacastrum is significantly improved by NaCl. J Plant Res 120:309–316, 10.1007/s10265-006-0042-3

    Article  CAS  Google Scholar 

  • Glenn EP (1987) Relationship between cation accumulation and water content of salt tolerant grasses and a sedge. Plant Cell Environ 10:205–212. doi:10.1111/1365-3040.ep11602236

    CAS  Google Scholar 

  • Glenn EP, Brown JJ (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18(2):227–255. doi:10.1080/07352689991309207

    Article  Google Scholar 

  • Hammer K (2001) Aizoaceae. In: Hanelt P (ed), Mansfeld’s encyclopedia on agricultural and horticultural crops, Institute of Plant Genetics and Crop Plant Research. Springer, Berlin, 1986, Vol 1, pp 223–227

  • Harada E, Yamaguchi Y, Koizumi N, Hiroshi S (2002) Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J Plant Physiol 159(4):445–448. doi:10.1078/0176-1617-00733

    Article  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51:463–499. doi:10.1146/annurev.arplant.51.1.463

    Article  CAS  Google Scholar 

  • Heldt HW (2005) Phenylpropanoids comprise a multitude of plant secondary metabolites and cell wall components, In: Plant Biochemistry (3rd eds). Elsevier Academic, New York, pp 448

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of ∆1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. doi:10.1104/pp.122.4.1129

    Article  PubMed  CAS  Google Scholar 

  • Huber W (1974) Ubet den Einfluss von NaCl—oder Abscisins/iurehehandiung auf den Protein—Metabolismus und einige weitere Enzyme des Aminos iurestoffwechsels in Keimlingen yon Pennisetum typhoides. Planta 121:225–235

    Article  CAS  Google Scholar 

  • Huchzermeyer B, Hausmann, Paquet-Durant F, Koyro H-W (2004) Biochemical and physiological mechanisms leading to salt tolerance. Trop Ecol 45(1):141–150

    CAS  Google Scholar 

  • Jena S, Sahoo P, Das AB (2003) New reports of chromosome number and genome size in eight mangroves from coastal Orissa. Caryologia 56(3):353–358

    Article  Google Scholar 

  • Jennings DH (1968) Microelectrode experiments with potato cells: a re-interpretation of the experimental findings. J Expt Bot 19:13. doi:10.1093/jxb/19.1.13

    Article  Google Scholar 

  • Joshi GV, Bhosale LJ (1981) Estuarine ecosystem of India. In: Sen DN, Tajpurohit KS (eds) Contributions to the ecology of halophytes. Dr. W. Junk Publications, The Hague, pp 21–33

    Google Scholar 

  • Kanth SV, Kannan PR, Selvi AT, Saravanan P, Rao RJ, Nair BU, Rengaswamy R (2009a) Phytoremediation of soil using Sesuvium portulacastrum—part I: removal of Na+ and Cl from tannery wastewater treated soil. J Amer Leath Chem Asso 104:17–24

    CAS  Google Scholar 

  • Kanth SV, Keerthi PB, Selvi AT, Sarvanan P, Rao RJ, Nair BU (2009b) Studies on the use of Sesuvium portulacastrum—part II: preservation of skins. J Amer Leath Chem Asso 104:25–32

    CAS  Google Scholar 

  • Kathiresan K, Ravishankar GA, Venkataraman LV (1997) In vitro multiplication of a coastal plant Sesuvium portulacastrum L. by axillary buds. In: Ravishankar GA, Venkataraman LV (eds) Biotechnological applications of plant tissue and cell culture. IBH, India, pp 185–192

    Google Scholar 

  • Klein R (2004) Phytoecdysteroids. J Amer Herbalists Guide (fall/winter issue), pp 18–28

  • Koyro H-W, Salma D, Harrouni C, Huchzermeyer B (2006) Strategies of a potential cash crop halophyte (Beta vulgaris ssp. maritima) to avoid salt injury. Trop Ecol 47(2):191–200

    CAS  Google Scholar 

  • Krupa Z, Bazynski T (1977) Participation of sulfoquinovosyl diacyl-glycerol in reconstitution of photosystem I activity of haptene-extracted chloroplasts. Bull Acad Political Sci Series B 25:409–414

    CAS  Google Scholar 

  • Lacerda LD (1982) Heavy metal pollution in soil and plants of the Iraja River Estuarine area in the Guanabara Bay Brazil. Rev Brasil de Biol 42:89–94

    Google Scholar 

  • Liao Y, Guizhu C (2007) Physiological adaptability of three mangrove species to salt stress. Acta Ecol Sin 27(6):2208–14. doi:10.1016/S1872-2032(07)60052-3

    Article  CAS  Google Scholar 

  • Lis-Balchin M, Deans SG (1997) Bioactivity of selected plant essential oils against Listeria monocytogenes. J Appl Bacteriol 82:759–762. doi:10.1046/j.1365-2672.1997.00153.x

    Article  CAS  Google Scholar 

  • Lokhande VH, Suprasanna P (2012) Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Parvaiz A, Prasad MNV (eds) Environmental adaptations to changing climate: metabolism, productivity and sustainability. Springer, New York, pp 29–56. doi:10.1007/978-1-4614-0815-4_2

    Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Suprasanna P (2009a) Morphological and molecular diversity analysis among the Indian clones of Sesuvium portulacastrum L. Genet Res Crop Evol 56:705–717. doi:10.1007/s10722-008-9396-9

    Article  CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2009b) Sesuvium portulacastrum (L.) L., a promising halophyte: cultivation, utilization and distribution in India. Genet Res Crop Evol 56:741–747. doi:10.1007/s10722-009-9435-1

    Article  Google Scholar 

  • Lokhande VH, Nikam TD, Ghane SG, Suprasanna P (2010a) In vitro culture, plant regeneration and clonal behaviour of Sesuvium portulacastrum (L.) L.: a prospective halophyte studies on the response of growth regulators for in vitro culture and clonal behavior of six clones of a halophyte, Sesuvium portulacastrum L. Physiol Mol Biol Plants 16(2):187–193. doi:10.1007/s12298-010-0020-z

    Article  Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2010b) Biochemical, physiological and growth changes in response to salinity in callus cultures of Sesuvium portulacastrum L. Plant Cell Tiss Org Cult 102:17–25. doi:10.1007/s11240-010-9699-3

    Article  Google Scholar 

  • Lokhande VH, Nikam TD, Suprasanna P (2010c) Differential osmotic adjustment to iso-osmotic salt and PEG stress in vitro in the halophyte Sesuvium portulacastrum L. J Crop Sci Biotechnol 13(4):251–256. doi:10.1007/s12892-010-0008-9

    Article  Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2011a) Effects of optimal and supra-optimal salinity stress on antioxidative defense, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tiss Org Cult 104:41–49

    Article  CAS  Google Scholar 

  • Lokhande VH, Srivastava S, Patade VY, Dwivedi S, Tripathi RD, Nikam TD, Suprasanna P (2011b) Investigation of arsenic accumulation and tolerance in Sesuvium portulacastrum (L.) L. Chemosphere 82(4):529–534. doi:10.1016/j.chemosphere.2010.10.059

    Article  CAS  Google Scholar 

  • Lokhande VH, Srivastava AK, Srivastava S, Nikam TD, Suprasanna P (2011c) Regulated alterations in redox and energetic status are the key mediators of salinity tolerance in the halophyte Sesuvium portulacastrum (L.) L. Plant Grow Regul 65(2):287–298. doi:10.1007/s10725-011-9600-3

    Article  CAS  Google Scholar 

  • Lonard RI, Judd FW (1997) The biological flora of coastal dunes and wetlands. Sesuvium portulacastrum (L.) L. J Coast Res 13(1):96–104

    Google Scholar 

  • Luettge U, Popp M, Medina E, Cram WJ, Diaz M, Griffths H, Lee HSJ, Schaefer C, Smith JAC, Stimmel KH (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. V. The Batis maritimeSesuvium portulacastrum vegetation unit. New Phytol 111(2):283–291

    Article  Google Scholar 

  • Luttge U, Smith JAC (1984) Structural, biophysical, and biochemical aspects of the role of leaves in plant adaptation to salinity and water stress. In: Staples RC, Toenniessen GH (eds) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 125–150

    Google Scholar 

  • Magawa ML, Gundidza M, Gweru N, Humphrey G (2006) Chemical composition and biological activities of essential oil from the leaves of Sesuvium portulacastrum. J Ethnopharmacol 103:85–89. doi:10.1016/j.jep.2005.07.024

    Article  CAS  Google Scholar 

  • Martinez ML, Valverde T, Moreno-Casasola P (1992) Germination response to temperature, salinity, light and depth of sowing of ten tropical dune species. Oecologia 92:343–353. doi:10.1007/BF00317460

    Article  Google Scholar 

  • Martinez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Expt Bot 56:2421–2431. doi:10.1093/jxb/eri235

    Article  CAS  Google Scholar 

  • McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecol Biogeo 16(5):545–556. doi:10.1111/j.1466-8238.2007.00317.x

    Article  Google Scholar 

  • Menzel U, Leith H (1999) Annex 4: halophyte database Vers 2. In: Leith H, Moshenko M, Lohmann M, Koyro HW, Hamdy A (eds) Halophyte uses in different climates 1. Ecological and physiological studies. Progress in biometeorology. Backhuys, Leiden, pp 159–258

    Google Scholar 

  • Messedi D, Labidi N, Grignon C, Abdelly C (2004) Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. J Plant Nutr Soil Sci 167:720–725. doi:10.1002/jpln.200420410

    Article  CAS  Google Scholar 

  • Minoda A, Sonoike K, Okada K, Sato N, Tsuzuki M (2003) Decrease in the efficiency of the electron donation to tyrosine Z of photosystem II in an SQDG-deficient mutant of Chlamydomonas. FEBS Lett 553:109–112. doi:10.1016/S0014-5793(03)00981-5

    Article  PubMed  CAS  Google Scholar 

  • Mirzaev Yu R, Syrov V (1992) Effect of phytoecdysteroids on the sexual activity of male rats. Doklady Akademii Nauk Respubliki Uzbekistana 3:47–49

    Google Scholar 

  • Moseki B (2007) Evidence for the presence of two components of the root transmembrane potential of a halophyte Sesuvium portulacastrum (L.) L., grown under saline conditions. Scient Res Ess 2(1):013–015

    Google Scholar 

  • Moseki B, Buru JC (2010) Ionic and water relations of Sesuvium portulacastrum (L). Scient Res Ess 5:35–40

    Google Scholar 

  • Munns R, Tester M (2008) Mechanism of salinity tolerance. Ann Rev Plant Biol 59:651–581. doi:10.1146/annurev.arplant.59.032607.092911

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nabikhan A, Kathiresan K, Anburaj R, Nabeel MA (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Coll Surf B: Biointerfaces 79:488–493. doi:10.1016/j.colsurfb.2010.05.018

    Article  CAS  Google Scholar 

  • Nair KS, Yun-gen M, Kumar SN (2005) Differential response of silkworm, Bombyx mori L. to phytoecdysteroid depending on the time of administration. J Appl Sci Environ Manag 9(3):81–86. doi:17357-163215-1-PB

    Google Scholar 

  • Najmutdinova DK, Saatov Z (1999) Lung local defense in experimental diabetes mellitus and the effect of 11, 20-dihydroxyecdysone in combination with manilil. Arch Insect Biochem Physiol 41:144–147. doi:10.1002/(SICI)1520-6327(1999) 41:3<144::AID-ARCH5>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  • Ninagi O, Maruyama M (1996) Utilization of 20-hydroxyecdysone extracted from a plant in sericulture. Japan Agri Res Quart 30:123–128

    CAS  Google Scholar 

  • Nouairi I, Ghnaya T, Youssef NB, Zarrouk M, Ghorbel MH (2006) Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum under cadmium stress. J Plant Physiol 163:1198–1202. doi:10.1016/j.jplph.2005.08.020

    Article  PubMed  CAS  Google Scholar 

  • Padmakumar K, Ayyakkannu K (1997) Seasonal variation of antibacterial and antifungal activities of the extracts of marine algae from Southern coast of India. Bot Mar 40:507–515. doi:10.1515/botm.1997.40.1-6.50

    Article  Google Scholar 

  • Pagter M, Bragato C, Malagoli M, Brix H (2009) Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquat Bot 90:43–51. doi:10.1016/j.aquabot.2008.05.005

    Article  CAS  Google Scholar 

  • Patil AV, Lokhande VH, Suprasanna P, Bapat VA, Jadhav JP (2012) Sesuvium portulacastrum (L.) L.: a potential halophyte for the degradation of toxic textile dye, Green HE4B. Planta 235(5):1051–1063. doi:10.1007/s00425-011-1556-z

    Article  PubMed  CAS  Google Scholar 

  • Pe´rez-Tornero O, Tallo´n CI, Porras I, Navarro JM (2009) Physiological and growth changes in micropropagated Citrus macrophylla explants due to salinity. J Plant Physiol 166(17):1923–1933. doi:10.1016/j.jplph.2009.06.009

    Article  CAS  Google Scholar 

  • Premnathan M, Kathiresan K, Chandra K (1995) Antiviral evaluation of some marine plants against Semliki Forest Virus. Internat J Pharmacog 33:1–3. doi:3109/13880209509088153

    Article  Google Scholar 

  • Rabhi M, Hafsi C, Lakhdar A, Barhoumi Z, Hamrouni MH, Abdelly C, Smauoi A (2009) Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under non leaching conditions. Afr J Ecol 47:463–468. doi:10.1111/j.1365-2028.2008.00989.x

    Article  Google Scholar 

  • Rabhi M, Giuntini D, Castagna A, Remorini D, Baldan B, Smaoui A, Abdelly C, Ranieri A (2010a) Sesuvium portulacastrum maintains adequate gas exchange, pigment composition, and thylakoid proteins under moderate and high salinity. J Plant Physiol 167(16):1336–1341. doi:10.1016/j.jplph.2010.05.009

    Article  PubMed  CAS  Google Scholar 

  • Rabhi M, Ferchichi S, Jouini J, Hamrouni MH, Koyro HW, Ranieri A, Abdelly C, Smaoui A (2010b) Phytodesalination of a salt-affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Biores Technol 101:6822–6828. doi:10.1016/j.biortech.2010.03.097

    Article  CAS  Google Scholar 

  • Ramani B, Papenbrock J, Zorn H (2004a) Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations. Z Natu 59c:835–842

    Google Scholar 

  • Ramani B, Papenbrock J, Schmidt A (2004b) Connecting sulfur metabolism and salt tolerance mechanisms in the halophytes Aster tripolium and Sesuvium portulacastrum. Trop Ecol 45:173–182

    Google Scholar 

  • Ramani B (2004c) Investigation of salt tolerance mechanisms in the halophytes Aster tripolium L. and Sesuvium portulacastrum L. through physiological, biochemical and molecular methods, A Ph. D. thesis, Institut fur Botanik, Austria.

  • Ramani B, Reeck T, Debez A, Stelzerd R, Huchzermeyera B, Schmidt A, Papenbrock J (2006) Aster tripolium L. and Sesuvium portulacastrum L.: two halophytes, two strategies to survive in saline habitats. Plant Physiol Biochem 44:395–408. doi:10.1016/j.plaphy.2006.06.007

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1985) Regulation of pH and generation of osmolarity in vascular land plants: costs and benefits in relation to efficiency of use of water, energy and nitrogen. New Phytol 101:25–77. doi:j.1469-8137.1985.tb02816.x

    Article  CAS  Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Cehllappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664. doi:10.1016/j.soilbio.2007.02.005

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384. doi:10.1146/annurev.pp.44.060193.002041

    Article  CAS  Google Scholar 

  • Rojas A, Hernandez L, Rogeho PM, Mata R (1992) Screening for antimicrobial activity of crude drug extracts and pure natural products from Mexican medicinal plants. J Ethnopharmacol 35:127–149. doi:10.1016/0378-8741(92)90025-M

    Article  Google Scholar 

  • Sen DN, Mohammad S, Kaser PK (2001) Biology and physiology of saline plants. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 563–581

    Google Scholar 

  • Short DC, Colmer TD (1999) Salt tolerance in the halophyte Halosarcia pergranulata subsp. pergranulata. Annu Bot 83:207–213. doi:10.1006/anbo.1998.0812

    Article  CAS  Google Scholar 

  • Simon P, Krolman J (1989) Ecdysone: from chemistry to mode of action. In: Koolman JA (ed) George Thieme, New York, pp 254–259

  • Sinlaparaya D, Duanghaklang P, Panichajakul S (2007) Enhancement of 20-hydroxyecdysone production in cell suspension cultures of Vitex glabrata R. Br. By precursors feeding. Afr J Biotechnol 6(14):1639–1642

    CAS  Google Scholar 

  • Slama I, Messedi D, Ghnaya T, Savouŕe A, Abdelly C (2006) Effects of water-deficit on growth and proline metabolism in Sesuvium portulacastrum. Environ Exp Bot 56:231–238. doi:10.1016/j.envexpbot.2005.02.007

    Article  CAS  Google Scholar 

  • Slama I, Ghnaya T, Hessini K, Messedi D, Savoure A, Abdelly C (2007a) Comparative study of the effects of mannitol and PEG osmotic stress on growth and solute accumulation in Sesuvium portulacastrum. Environ Expt Bot 61:10–17. doi:10.1016/j.envexpbot.2007.02.004

    Article  CAS  Google Scholar 

  • Slama I, Ghnaya T, Messedi D, Hessini K, Labidi N, Savoure A, Abdelly C (2007b) Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress. J Plant Res 120:291–299. doi:10.1007/s10265-006-0056-x

    Article  PubMed  CAS  Google Scholar 

  • Slama I, Ghnaya T, Savouŕe A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth, water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451. doi:10.1016/j.crvi.2008.03.006

    Article  PubMed  CAS  Google Scholar 

  • Song J, Chen M, Feng G, Jia Y, Wang B, Zhang F (2008) Effect of salinity on growth, ion accumulation and the role of ions in osmotic adjustment of two populations of Suaeda salsa. Plant Soil 102:103–112. doi:10.1007/s11104-008-9712-3

    Google Scholar 

  • Strogonov BP (1973) Structure and function of plant cells in saline habitats. Wiley, New York, p 245

    Google Scholar 

  • Subbarao GV, Levine LH, Wheeler RM, Stutte GW (2001a) Glycine betaine accumulation: its role in stress resistance in crop plants. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 881–907

    Google Scholar 

  • Subbarao GV, Wheeler RM, Berry WL, Stutte GW (2001b) Sodium: a functional nutrient in plants. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker, New York, pp 363–384

    Google Scholar 

  • Suganthy N, Pandian SK, Devi KP (2009) Cholinesterase inhibitory effects of Rhizophora lamarckii, Avicennia officinalis, Sesuvium portulacastrum and Suaeda monica: mangroves inhabiting an Indian coastal area (Vellar Estuary). J Enz Inhibit Med Chem 24(3):702–707. doi:10.1080/14756360802334719

    Article  CAS  Google Scholar 

  • Szabados L, Savoure A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. doi:10.1016/j.tplants.2009.11.009

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. doi:10.1093/aob/mcg058

    Article  PubMed  CAS  Google Scholar 

  • Thulasidas SK, Kulkarni MJ, Goyal N, Murali MS, Mathur JN, Page AG, Chintalwar GJ, Banerji A (1999). Studies on the uptake of U, Eu, Cs and Sr by the plant Sesuvium portulacastrum for bioremediation using Analytical Spectroscopy. NUCAR 99 (Nuclear and Radiochemistry Symposium), Mumbai, January 19–22

  • Toroser D, Huber SC (1997) Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate-synthase in spinach leaves. Plant Physiol 114:947–955. doi:10.1104/pp.114.3.947

    Article  PubMed  CAS  Google Scholar 

  • Tóth T, Kertesz M, Guerrat LC, Labrada JL, Machado BP, Fonseca PC, Martinez MN (1997) Plant composition of a pasture as a predictor of soil salinity. Rev Biol Trop 45:1385–1393

    Google Scholar 

  • Treichel S (1986) The influence of NaCl on delta-1-pyrroline-5-carboxylate reductase in proline accumulating cell suspension cultures of Mesembryanthemum nodiflorum and other halophytes. Physiol Plant 67:173–181. doi:10.1111/j.1399-3054.1986.tb02440.x

    Article  CAS  Google Scholar 

  • Uchiyama M, Yoshida T (1974) Effect of ecdysterone on carbohydrate and lipid metabolism. In: Burdette WJ (ed) Invertebrate endocrinology and hormonal heterophylly. Springer, Berlin, pp 401–416

    Chapter  Google Scholar 

  • Venkatesalu V, Chellapan KP (1993) Photosynthetic characteristics of Sesuvium portulacastrum L. under salt stress. Photosynthetica 28:313–316

    CAS  Google Scholar 

  • Venkatesalu V, Chellappan KP (1993) Photochemical characteristics of Sesuvium portulacastrum L. under sodium chloride stress. Photosynthetica 29:139–141

    CAS  Google Scholar 

  • Venkatesalu V, Kumar RR, Chellappan KP (1994a) Growth and mineral distribution of Sesuvium portulacastrum L., a salt marsh halophyte, under sodium chloride stress. Commun Soil Sci Plant Anal 25:2797–2805. doi:10.1080/00103629409369226

    Article  CAS  Google Scholar 

  • Venkatesalu V, Kumar RR, Chellappan KP (1994b) Sodium chloride stress on organic constituents of Sesuvium portulacastrum L., a salt marsh halophyte. J Plant Nutr 17:1635–1645. doi:10.1080/01904169409364836

    Article  CAS  Google Scholar 

  • Vijayan K, Chakraborti SP, Ghosh PD (2003) In vitro screening of mulberry (Morus spp.) for salinity tolerance. Plant Cell Rep 22:350–357. doi:10.1007/s00299-003-0695-5

    Article  PubMed  CAS  Google Scholar 

  • Wang LW, Showalter AM (2004) Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrate. Physiol Plant 120:405–412. doi:10.1111/j.0031-9317,2004. 00247.x

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Wang H, Han B, Wang B, Guo A, Zheng D, Liu C, Chang L, Peng M, Wang X (2012) Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Plant Physiol Biochem 51:53–62. doi:10.1016/j.plaphy.2011.10.009

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Annals of botany 92:487–511. doi:10.1093/aob/mcg164

    Article  PubMed  CAS  Google Scholar 

  • Wong LZ, Li HY, Chang YY, Zhu GQ, Shong SX, Li XH, Ye JS (1979) Identification and physiological tests of phytoecdysones from Chinese flora with the silkworm, Bombyx mori L. Acta Entomol Sin 22:396–403

    Google Scholar 

  • Yang J, Yen HE (2002) Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiol 130(2):1032–1042. doi:10.1104/pp.004325

    Article  PubMed  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Austr J Plant Physiol 13:161–173. doi:10.1071/PP9860161

    Article  Google Scholar 

  • Yokoi S, Bressan RA, Hasegawa PM (2002) Genetic engineering of crop plants for abiotic stress. In: Iwanaga M (ed) Salt stress tolerance of plants, The Japan International Centre for Agricultural Sciences (JIRCAS) Working Report No. 23, Tsukuba: Japan International Centre for Agricultural Sciences Publishing, Japan, pp 25–33

  • Yoshida T, Otaka T, Uchiyama M, Ogawa S (1971) Effect of ecdysterone on hyperglycemia in experimental animals. Biochem Pharmacol 20:3263–3268. doi:10.1016/0006-2952(71)90431-X

    Article  PubMed  CAS  Google Scholar 

  • Zaier H, Ghnaya T, Lakhdar A, Baioui R, Ghabriche R, Mnasri M, Sghair S, Lutts S, Abdelly C (2010a) Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: tolerance and accumulation. J Haz Mat 183(1–3):609–615. doi:10.1016/j.jhazmat.2010.07.068

    Article  CAS  Google Scholar 

  • Zaier H, Mudarra A, Kutscher D, Fernandez de la Campa MR, Abdelly C, Sanz-Medel A (2010b) Induced lead binding phytochelatins in Brassica juncea and Sesuvium portulacastrum investigated by orthogonal chromatography inductively coupled plasma-mass spectrometry and matrix assisted laser desorption ionization–time of flight–mass spectrometry. Anal Chim Acta 671(1–2):48–54. doi:10.1016/j.aca.2010.04.054

    Article  PubMed  CAS  Google Scholar 

  • Zeng HC, Deng LH, Zhang CF (2006) Cloning of salt tolerance-related cDNAs from the mangrove plant Sesuvium portulacastrum L. J Integ Plant Biol 48:952–957. doi:10.1111/j.1744-7909.2006.00287.x

    Article  CAS  Google Scholar 

  • Zhang JS, Xie C, Li ZY, Chen SY (1999) Expression of the plasma membrane H+-ATPase gene in response to salt stress in a rice salt-tolerant mutant and its original variety. Theoret Appl Genet 99:1006–1011

    Article  CAS  Google Scholar 

  • Zhang F, Yang YL, He WL, Zhao X, Zhang LX (2004) Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica. In Vitro Cell Dev Biol- Plant 40:491–494. doi:10.1079/IVP2004546

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi:10.1016/S1360-1385(00)01838-0

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Clin Crit Rev Plant Sci 16:253–277. doi:10.1080/07352689709701950

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Penna Suprasanna.

Additional information

Vinayak H. Lokhande and Bhoomi K. Gor have contributed equally to this work.

About this article

Cite this article

Lokhande, V.H., Gor, B.K., Desai, N.S. et al. Sesuvium portulacastrum, a plant for drought, salt stress, sand fixation, food and phytoremediation. A review. Agron. Sustain. Dev. 33, 329–348 (2013). https://doi.org/10.1007/s13593-012-0113-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0113-x

Keywords

Navigation