Skip to main content

Advertisement

Log in

Agriculture and greenhouse gases, a common tragedy. A review

Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

Increased atmospheric concentrations of greenhouse gases has led to global warming and associated climatic changes. The problem has been aggravated by the perception that the atmosphere is an infinite and toll-free resource. The well-known concept proposed by Garrett Hardin—“The Tragedy of the Commons”—highlights the misuse of common resources, which ultimately lead to their depletion. This article emphasizes the relevance of the same concept to the current climatic changes and highlights the impact of agriculture on the environment. The specific focus is on field crop production and livestock husbandry that have resulted in deteriorating environmental services and increased greenhouse gas emissions. Meanwhile, the total amount of energy consumed by these sectors is enormous, encompassing 11 exajoules (EJ) annually. In addition, the article highlights possible impacts of climate change on agricultural productivity. Considering the foreseen growth of the global human population, it is expected that additional pressures will aggravate natural environments. Adoption of recommended management practices is crucial to reverse the environmental footprint of agriculture and lessen its impact on climate change. Regarding croplands, these practices can include reduced tillage systems, crop residue management, improved management of nutrients and pests, cover cropping, agroforestry, biochar application as soil amendment, and utilization of precision agriculture technologies. In the livestock sector, recommended management practices include changes in animals’ diet and appropriate management of manure. Adoption of these practices is also expected to decrease the on-farm and off-farm energy use. To encourage the adoption of these practices, authorities should provide the farmers with incentives, such as payments for improving environmental services. Also, international regulations must be enforced to instigate a notable shift in human diets with the goal of reducing the environmental impact of food production. Judicious implementation of related policies would be crucial for promoting the required links between agricultural production and environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASF:

Animal source foods

BMPs:

Best management practices

C:

Carbon

CE:

Carbon equivalent

CH4 :

Methane

CO2 :

Carbon dioxide

CO2-e:

Carbon dioxide equivalent

LME:

Liquid milk equivalent

N2O:

Nitrous oxide

N:

Nitrogen

NT:

No-till

SOC:

Soil organic carbon

References

  • Ainsworth EA, Rogers A, Nelson R, Long SP (2004) Testing the “source–sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agr Forest Meteorol 122:85–94. doi:10.1016/j.agrformet.2003.09.002

    Article  Google Scholar 

  • Allard V, Soussana JF, Falcimagne R, Berbigier P, Bonnefond JM, Ceschia E, D’hour P, He’nault C, Laville P, Martin C, Pinare’s-Patino C (2007) The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland. Agr Ecosyst Environ 121:47–58. doi:10.1016/j.agee.2006.12.004

    Article  CAS  Google Scholar 

  • Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nature Geosci 3:336–340. doi:10.1038/NGEO846

    Article  CAS  Google Scholar 

  • Beauchemin KA, Janzen HH, Little SM, McAllister TA, McGinn SM (2010) Life cycle assessment of greenhouse gas emissions from beef production in western Canada: a case study. Agr Syst 103:371–379. doi:10.1016/j.agsy.2010.03.008

    Article  Google Scholar 

  • Biello D (2011) The false promise of biofuels—the breakthroughs needed to replace oil with plant-based fuels are proving difficult to achieve. Sci Am 305:58–65. doi:10.1038/scientificamerican0811-58

    Article  PubMed  Google Scholar 

  • Bindi M, Howden SM (2008) Food crops under global warming and changing water availability. In: An International Meeting of the Water Tribune of Expozaragoza. Zaragoza

  • Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464:579–582. doi:10.1038/nature08930

    Article  PubMed  CAS  Google Scholar 

  • Bongiovanni R, Lowenberg-Deboer J (2004) Precision agriculture and sustainability. Precis Agr 5:359–387

    Article  Google Scholar 

  • Bruzelius N (2011) Meat eater’s guide to climate change + health. Lifecycle assessments: methodology & results. Environmental Working Group, Washington, DC

    Google Scholar 

  • Casey JW, Holden NM (2005) The relationship between greenhouse gas emissions and the intensity of milk production in Ireland. J Environ Qual 34:429–436

    Article  PubMed  CAS  Google Scholar 

  • Challinor A, Wheeler T, Garforth C, Craufurd P, Kassam A (2007) Assessing the vulnerability of food crop systems in Africa to climate change. Clim Chang 83:381–399. doi:10.1007/s10584-007-9249-0

    Article  Google Scholar 

  • Clements DR, Weise SF, Brown R, Stonehouse DP, Hume DJ, Swanton CJ (1995) Energy analysis of tillage and herbicide inputs in alternative weed management systems. Agr Ecosyst Environ 52:119–128. doi:10.1016/0167-8809(94)00546-Q

    Article  Google Scholar 

  • Committee on Environment and Natural Resources (2010) Scientific assessment of hypoxia in U.S. coastal waters. Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology, Washington, DC

    Google Scholar 

  • Cudennec C, Leduc C, Koutsoyiannis D (2007) Dryland hydrology in Mediterranean regions—a review. Hydrolog Sci J 52:1077–1087

    Article  Google Scholar 

  • DeAngelo BJ, de la Chesnaye FC, Beach RH, Sommer A, Murray BC (2006) Methane and nitrous oxide mitigation in agriculture. Energy J 3:89–108

    Google Scholar 

  • de Jong B, Anaya C, Masera O, Olguín M, Paz F, Etchevers J, Martínez DR, Guerrero G, Balbontín D (2010) Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. Forest Ecol Manag 260:1689–1701. doi:10.1016/j.foreco.2010.08.011

    Article  Google Scholar 

  • Delgado CL (2003) Rising consumption of meat and milk in developing countries has created a new food revolution. J Nutr 133:3907S–3910S

    PubMed  CAS  Google Scholar 

  • FAO (2006) World agriculture: towards 2030/2050. Interim report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • FAO (2007) The state of food and agriculture—paying farmers for environmental services. FAO Agriculture series no. 38. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fiala N (2008) Meeting the demand: an estimation of potential future greenhouse gas emissions from meat production. Ecol Econ 67:412–419. doi:10.1016/j.ecolecon.2007.12.021

    Article  Google Scholar 

  • Fiala N (2009) The greenhouse hamburger. Sci Am 300:72–75. doi:10.1038/scientificamerican0209-72

    Article  PubMed  Google Scholar 

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi:10.1126/science.1152747

    Article  PubMed  CAS  Google Scholar 

  • Franzluebbers AJ, Schomberg HH, Endale DM (2007) Surface-soil responses to paraplowing of long-term no-tillage cropland in the Southern Piedmont USA. Soil Tillage Res 96:303–315. doi:10.1016/j.still.2007.07.001

    Article  Google Scholar 

  • Garnett T (2009) Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ Sci Policy 12:491–503. doi:10.1016/j.envsci.2009.01.006

    Article  CAS  Google Scholar 

  • González AD, Frostell B, Carlsson-Kanyama A (2011) Protein efficiency per unit energy and per unit greenhouse gas emissions: potential contribution of diet choices to climate change mitigation. Food Policy 36:562–570. doi:10.1016/j.foodpol.2011.07.003

    Article  Google Scholar 

  • Harden JW, Berhe AA, Torn M, Harte J, Liu S, Stallard RF (2008) Soil erosion: data say C sink. Science 320:178–179. doi:10.1126/science.320.5873.178

    Article  PubMed  CAS  Google Scholar 

  • Hardin G (1968) The tragedy of the commons. Science 162:1243–1248

    Article  PubMed  CAS  Google Scholar 

  • Hoeppner JW, Entz MH, McConkey BG, Zentner RP, Nagy CN (2006) Energy use and efficiency in two Canadian organic and conventional crop production systems. Renew Agr Food Syst 21:60–67. doi:10.1079/RAF2005118

    Article  Google Scholar 

  • Huggins DR, Reganold JP (2008) No-till: the quiet revolution. Sci Am 299:70–77. doi:10.1038/scientificamerican0708-70

    Article  PubMed  Google Scholar 

  • Hutchinson JJ, Campbell CA, Desjardins RL (2007) Some perspectives on carbon sequestration in agriculture. Agr Forest Meteorol 142:288–302. doi:10.1016/j.agrformet.2006.03.030

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Kauffman JB, Steele MD, Cummings DL, Jaramillio VJ (2003) Biomass dynamics associated with deforestation, fire, and conversion to cattle pasture in a Mexican tropical dry forest. Forest Ecol Manag 176:1–12. doi:10.1016/S0378-1127(02)00227-X

    Article  Google Scholar 

  • Kiritani K (2007) The impact of global warming and land-use change on the pest status of rice and fruit bugs (Heteroptera) in Japan. Glob Change Biol 13:1586–1595. doi:10.1111/j.1365-2486.2007.01397.x

    Article  Google Scholar 

  • Kögel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kölbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14. doi:10.1016/j.geoderma.2010.03.009

    Article  Google Scholar 

  • Laird D, Fleming P, Wang B, Horton R, Karlen D (2010) Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158:436–442. doi:10.1016/j.geoderma.2010.05.012

    Article  CAS  Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450. doi:10.1016/S0160-4120(02)00192-7

    Article  PubMed  CAS  Google Scholar 

  • Lal R (2004) Carbon emission from farm operations. Environ Int 30:981–990. doi:10.1016/j.envint.2004.03.005

    Article  PubMed  CAS  Google Scholar 

  • Lal R, Griffin M, Apt J, Lave L, Morgan G (2004) Response to comments on “Managing soil carbon”. Science 305:1567–1568. doi:10.1126/science.1101271

    Article  Google Scholar 

  • Lal R (2007) Tragedy of the global commons: soil, water and air. CSA News V52(N10):10–11

    Google Scholar 

  • Lal R, Follett RF, Stewart BA, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172:943–956. doi:10.1097/ss.0b013e31815cc498

    Article  CAS  Google Scholar 

  • Lal R (2009) Challenges and opportunities in soil organic matter research. Eur J Soil Sci 60:158–169. doi:10.1111/j.1365-2389.2008.01114.x

    Article  CAS  Google Scholar 

  • Lee JW, Hawkins B, Day DM, Reicosky DC (2010) Sustainability: the capacity of smokeless biomass pyrolysis for energy production, global carbon capture and sequestration. Energy Environ Sci 3:1695–1705. doi:10.1039/C004561F

    Article  CAS  Google Scholar 

  • Lobb D (1989) A study of the impact of no-till on tractor fuel cost vs. crop returns as affected by various no-till planter modifications. Agricultural Energy Centre of the Ontario Ministry of Agriculture and Food, Toronto

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628. doi:10.1146/annurev.arplant.55.031903.141610

    Article  PubMed  CAS  Google Scholar 

  • Lovett DK, Shalloo L, Dillon P, O’Mara FP (2006) A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime. Agr Syst 88:156–179. doi:10.1016/j.agsy.2005.03.006

    Article  Google Scholar 

  • Matsumoto N, Paisancharoen K, Hakamata T (2008) Carbon balance in maize fields under cattle manure application and no-tillage cultivation in northeast Thailand. Soil Sci Plant Nutr 54:277–288. doi:10.1111/j.1747-0765.2007.00223.x

    Article  Google Scholar 

  • Meyerson FAB (1998) Population, development and global warming: averting the tragedy of the climate commons. Popul Environ 19:443–463. doi:10.1023/A:1024622220962

    Article  Google Scholar 

  • Moebius-Clune BN, van Es HM, Idowu OJ, Schindelbeck RR, Moebius-Clune DJ, Wolfe DW, Abawi GS, Thies JE, Gugino BK, Lucey R (2008) Long-term effects of harvesting maize stover and tillage on soil quality. Soil Sci Soc Am J 72:960–969. doi:10.2136/sssaj2007.0248

    Article  CAS  Google Scholar 

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307. doi:10.1016/S0065-2113(10)08005-3

    Article  CAS  Google Scholar 

  • Naylor R, Steinfeld H, Falcon W, Galloway J, Smil V, Bradford E, Alder J, Mooney H (2005) Losing the links between livestock and land. Science 310:1621–1622. doi:10.1126/science.1117856

    Article  PubMed  CAS  Google Scholar 

  • Nelson RG, Hellwinckel CM, Brandt CC, West TO, De La Torre Ugarte DG, Marland G (2009) Energy use and carbon dioxide emissions from cropland production in the United States, 1990–2004. J Environ Qual 38:418–425. doi:10.2134/jeq2008.0262

    Article  PubMed  CAS  Google Scholar 

  • OFID (2009) Biofuels and food security—implications of an accelerated biofuels production. Summary of the OFID study prepared by IIASA. The OPEC Fund for International Development, Vienna

    Google Scholar 

  • Pelletier N, Pirog R, Rasmussen R (2010) Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agr Syst 103:380–389. doi:10.1016/j.agsy.2010.03.009

    Article  Google Scholar 

  • Perdomo C, Irisarri P, Ernest O (2009) Nitrous oxide emission from an Uruguayan argiudoll under different tillage and rotation treatments. Nutr Cycling Agroecosyst 84:119–128. doi:10.1007/s10705-008-9231-x

    Article  Google Scholar 

  • Popp A, Lotze-Campen H, Bodirsky B (2010) Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environ Chang 20:451–462. doi:10.1016/j.gloenvcha.2010.02.001

    Article  Google Scholar 

  • Price L, de la Rue du Can S, Sinton J, Worrell E, Nan Z, Sathaye J, Levine M (2006) Sectoral trends in global energy use and greenhouse gas emissions. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley

  • Randolph SE (2008) Dynamics of tick-borne disease systems: minor role of recent climate change. Revue Scientifique et Technique-Office International des Epizooties 27:367–381

    CAS  Google Scholar 

  • Refsgaard K, Halbergb N, Kristensenb ES (1998) Energy utilization in crop and dairy production in organic and conventional livestock production systems. Agr Syst 57:599–630. doi:10.1016/S0308-521X(98)00004-3

    Article  Google Scholar 

  • Rosenzweig C, Casassa G, Karoly DJ, Imeson A, Liu C, Menzel A, Rawlins S, Root TL, Seguin B, Tryjanowski P (2007) Assessment of observed changes and responses in natural and managed systems. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 79–131

    Google Scholar 

  • Schneider UA, Smith P (2009) Energy intensities and greenhouse gas emission mitigation in global agriculture. Energy Efficiency 2:195–206. doi:10.1007/s12053-008-9035-5

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240. doi:10.1126/science.1151861

    Article  PubMed  CAS  Google Scholar 

  • Six J, Elliot ET, Paustin K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103

    Article  CAS  Google Scholar 

  • Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2003) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 54:779–791. doi:10.1046/j.1365-2389.2003.00567.x

    Article  Google Scholar 

  • Smith P, Martin M, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan P, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos T Roy Soc 363:789–813. doi:10.1098/rstb.2007.2184

    Article  CAS  Google Scholar 

  • Soil Conservation Council of Canada (2003) Global warming in agriculture—best management practices. Agriculture and Agri-Food, Canada

    Google Scholar 

  • Stavi I, Lal R (2011a) Loss of soil resources from water-eroded versus uneroded cropland sites under simulated rainfall. Soil Use Manage 27:69–76. doi:10.1111/j.1475-2743.2010.00312.x

    Article  Google Scholar 

  • Stavi I, Lal R (2011b) Variability of soil physical quality and erodibility in a water-eroded cropland. Catena 84:148–155. doi:10.1016/j.catena.2010.10.006

    Article  Google Scholar 

  • Stavi I, Lal R, Owens LB (2011) On-farm effects of no-till versus occasional tillage on soil quality and crop yields in eastern Ohio. Agron Sustain Dev 31:475–482. doi:10.1007/s13593-011-0006-4

    Article  Google Scholar 

  • Stavi I, Lal R (2012) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev. doi:10.1007/s13593-012-0081-1. (in press)

  • Stehfest E, Bouwman L, van Vuuren DP, den Elzen MGJ, Eickhout B, Kabat P (2009) Climate benefits of changing diet. Clim Chang 95:83–102. doi:10.1007/s10584-008-9534-6

    Article  CAS  Google Scholar 

  • Tilman D, Fargione J, Wolff B, DÕAntonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. doi:10.1126/science.1057544

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600. doi:10.1126/science.1133306

    Article  PubMed  CAS  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271. doi:10.1126/science.1177970

    Article  PubMed  CAS  Google Scholar 

  • Thornton PK, van de Steeg J, Notenbaert A, Herrero M (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agr Syst 101:113–127. doi:10.1016/j.agsy.2009.05.002

    Article  Google Scholar 

  • Thornton PK, Gerber PJ (2010) Climate change and the growth of the livestock sector in developing countries. Mitig Adapt Strateg Glob 15:169–184. doi:10.1007/s11027-009-9210-9

    Article  Google Scholar 

  • UN (2011) Seven billion and growing: the role of population policy in achieving sustainability. Department of Economic and Social Affairs, Population Division, technical paper no. 2011/3.

  • Vadez V, Berger JD, Warkentin T, Asseng S, Ratnakumar P, Rao KPC, Gaur PM, Munier-Jolain N, Larmure A, Voisin AS, Sharma HC, Pande S, Sharma M, Krishnamurthy L, Zaman MA (2012) Adaptation of grain legumes to climate change: a review. Agron Sustain Dev 32:31–44. doi:10.1007/s13593-011-0020-6

    Article  Google Scholar 

  • Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, Ritchie JC, McCarty GW, Heckrath G, Kosmas C, Giraldez JV, Marques da Silva JR, Merckx R (2007) The impact of agricultural soil erosion on the global carbon cycle. Science 318:626–629. doi:10.1126/science.1145724

    Article  PubMed  Google Scholar 

  • Vergé XPC, Dyer JA, Desjardins RL, Worth D (2008) Greenhouse gas emissions from the Canadian beef industry. Agr Syst 98:126–134. doi:10.1016/j.agsy.2008.05.003

    Article  Google Scholar 

  • WMO (2010) WMO Greenhouse Gas Bulletin. The state of greenhouse gases in the atmosphere based on global observations through 2009. World Meteorological Organization, Geneva

    Google Scholar 

  • WMO (2011) Weather extremes in a changing climate: hindsight on foresight. World Meteorological Organization, Geneva

    Google Scholar 

  • Ziesemer J (2007) Energy use in organic food systems. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilan Stavi.

About this article

Cite this article

Stavi, I., Lal, R. Agriculture and greenhouse gases, a common tragedy. A review. Agron. Sustain. Dev. 33, 275–289 (2013). https://doi.org/10.1007/s13593-012-0110-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0110-0

Keywords

Navigation