Skip to main content

Advertisement

Log in

Enhanced blackberry production using Pseudomonas fluorescens as elicitor

Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

This report shows for the first time the ability of Pseudomonas fluorescens N21.4 to trigger the secondary metabolism of blackberries, Rubus fruticosus, in the field. Blackberries are an excellent source of bioactive compounds as compared to other marketable berries. Biotic elicitation with plant growth-promoting rhizobacteria has been proposed to improve biomass production and to trigger secondary metabolism. However, most reports that support this statement involve controlled, in-door experiments, not real field conditions under continuous environmental changes. Furthermore, most investigations are carried out using model plants. Strain P. fluorescens N21.4 has been able to trigger secondary metabolism of plant species. Therefore we studied P. fluorescens ability to increase blackberry fitness, fruit quality, and protection against natural pests under field conditions. P. fluorescens N21.4 was delivered in the root or shoot system of blackberry plants along its entire production period, evaluating fruit quality and yield. Our results show an average increase up to 800 g per plant in total production, directly related to the increase in flowering buds. Protection against Spodoptera littoralis in inoculated plants was similar to control plants, hence contributing to increase in yield. Fruits from inoculated plants showed significant increases of up to 3 °Brix, total phenolics of up to 18 %, and flavonoids of up to 22 %. We conclude that P. fluorescens N21.4 enhances plant defense and fruit quality together with an increased productivity as compared to current management practices, already obtaining high yields with economic profit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves HS, da Silva R, Macagnan D, de Almeida B, Baracat MC, Mounteer A (2004) Rhizobacterial induction of systemic resistance in tomato plants: non-specific protection and increase in enzyme activities. Biol Control 29:288–295. doi:10.1016/S1049-9644(03)00163-4

    Article  Google Scholar 

  • Benvenuti S, Pellati F, Melegari M, Bertelli D (2004) Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Food Sci 69:164–169. doi:10.1111/j.1365-2621.2004.tb13352.x

    Google Scholar 

  • Boué SM, Shih FF, Shih BY, Daigle KW, Carter-Wientjes CH, Cleveland TE (2008) Effect of biotic elicitors on enrichment of antioxidant properties and induced isoflavones in soybean. J Food Sci 73:43–49. doi:10.1111/j.1750-3841.2008.00707.x

    Article  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30. doi:10.1016/S0023-6438(95)80008-5

    CAS  Google Scholar 

  • Capanoglu E (2010) The potential of priming in food production. Trends Food Sci Technol 21:399–407. doi:10.1016/j.tifs.2010.05.001

    Article  CAS  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395. doi:10.1016/S0065-2296(09)51009-9

    Article  CAS  Google Scholar 

  • Domenech J, Ramos Solano B, Probanza A, Lucas JA, Gutierrez Mañero FJ (2007) Elicitation of systemic resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a study of the putative induction pathway. Plant Soil 290:43–50. doi:10.1007/s11104-006-9089-0

    Article  CAS  Google Scholar 

  • Giovanelli G, Buratti S (2009) Comparison of polyphenolic composition and antioxidant activity of wild Italian blueberries and some cultivated varieties. Food Chem 112:903–908. doi:10.1016/j.foodchem.2008.06.066

    Article  CAS  Google Scholar 

  • Giusti MM, Wrolstad RE (2001) Anthocyanins characterization and measurement with UV-visible spectroscopy. In: Wrolstad RE, Acree TE, An H, Decker EA, Penner MH, Reid DS, Schwartz SJ, Shoemaker CF, Sporns P, Wiley J (eds) Current protocols in food analytical chemistry. Wiley, New York, pp 121–129. doi:10.1002/0471142913.faf0102s00

    Google Scholar 

  • Gutierrez Mañero FJ, Ramos B, Lucas JA, Probanza A, Barrientos ML (2003) Systemic induction of terpenic compounds in D. lanata. J Plant Physiol 160:105–130. doi:10.1078/0176-1617-00821

    Article  PubMed  Google Scholar 

  • Jordheim M, Enerstvedt KH, Andersen OM (2011) Identification of cyanidin 3-O-β-(6″-(3-Hydroxy-3-methylglutaroyl) glucoside) and other anthocyanins from wild and cultivated blackberries. J Agric Food Chem 59:7436–7440. doi:10.1021/jf201522b

    Article  PubMed  CAS  Google Scholar 

  • Lucas García JA, Probanza A, Ramos B, Ruiz Palomino M, Gutiérrez Mañero FJ (2004) Effects of inoculation with a plant growth promoting rhizobacterium of Bacillus generus (Bacillus licheniformis) on the growth, fruit production and induction of systemic resistance of different pepper and tomato varieties. Agronomy (Agronomy for sustainable development, since 2004) 24:69–76. doi:10.1051/agro:2004020

    Google Scholar 

  • Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: improving human health and healthy aging, and promoting quality life—a review. Plant Foods Hum Nutr 65:299–308. doi:10.1007/s11130-010-0177-1

    Article  PubMed  Google Scholar 

  • Poulev A, O’Neal JM, Logendra S, Pouleva RB, Timeva V, Garvey AS, Gleba D, Jenkins IS, Halpern B, Kneer R, Cragg GM, Raskin I (2003) Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J Med Chem 46:2542–2547. doi:10.1021/jm020359t

    Article  PubMed  CAS  Google Scholar 

  • Rabino I, Mancinelli AL (1986) Light, temperature, and anthocyanin production. Plant Physiol 81:922–924

    Article  PubMed  CAS  Google Scholar 

  • Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102. doi:10.1042/BA20020118

    Article  PubMed  CAS  Google Scholar 

  • Ramos Solano B, Algar E, García-Villaraco A, García-Cristobal J, Lucas JA, Gutierrez Mañero FJ (2010a) Biotic elicitation of isoflavone metabolism with plant growth promoting rhizobacteria in early stages of development in Glycine max var Osumi. J Agric Food Chem 58:1484–1492. doi:10.1021/jf903299a

    Article  PubMed  CAS  Google Scholar 

  • Ramos Solano B, Lucas JA, Garcia-Villaraco A, Algar E, García-Cristobal J, Gutierrez Mañero JF (2010b) Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L. Plant soil 334:189–197. doi:10.1007/s11104-010-0371-9

    Article  CAS  Google Scholar 

  • Senthil N, Raguchander T, Viswanathan R, Samiyappan R (2003) Talc formulated Fluorescent pseudomonads for sugarcane red rot suppression and enhanced yield under field conditions. Sugartech 5:37–43. doi:10.1007/BF02943762

    CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1979) Biometría: Principios y Métodos Estadísticos en la Investigación Biológica, Lahoz M (Trad). H Blume Ediciones, Madrid, p 832

    Google Scholar 

  • van Hulten M, Pelser M, van Loon LC, Corn MJP, Ton J (2006) Cost and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci USA 103:5602–5607. doi:10.1073/pnas.0510213103

    Article  PubMed  Google Scholar 

  • van Wees SCM, van der Ent S, Pietersea CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448. doi:10.1016/j.pbi.2008.05.005

    Article  PubMed  Google Scholar 

  • Xu BJ, Chang SKC (2007) Comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72:159–166. doi:10.1111/j.1750-3841.2006.00260.x

    Article  Google Scholar 

  • Zhang S, Reddy MS, Kloepper JW (2004) Tobacco growth enhancement and blue mold protection by rhizobacteria: Relationship between plant growth promotion and systemic disease protection by PGPR strain. Plant Soil 262:277–288. doi:10.1023/B:PLSO.0000037048.26437.fa

    Article  CAS  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Pare PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273. doi:10.1111/j.1365-313X.2008.03593.x

    Article  PubMed  CAS  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. doi:10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ministerio de Ciencia e Innovación for granting DGS (BES-2010-038057) and projects AGL 2009-08324, CM S2009/AMB-1511, and Agricola El Bosque, S.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Ramos-Solano.

About this article

Cite this article

García-Seco, D., Bonilla, A., Algar, E. et al. Enhanced blackberry production using Pseudomonas fluorescens as elicitor. Agron. Sustain. Dev. 33, 385–392 (2013). https://doi.org/10.1007/s13593-012-0103-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-012-0103-z

Keywords

Navigation