Skip to main content
Log in

Physical properties of honeybee silk: a review

  • Review article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Honeybee silk is released from secretory cells and polymerises as birefringent tactoids in the lumen while silk is spun by a spinneret at the tip of the labium–hypopharynx and contains ά-helical proteins arranged in a four-strand coiled-coil structure. Wet fibres are only half as stiff as dried ones, but are equal in strength. The fibroin is hygroscopic and lithium thiocyanate and urea eliminate the yield point tested on both dry and wet fibres. The slopes of the solvent-related curves are reduced compared to those tested in water. Silk sheets are independent of temperature when deformed in tension. This fibre is rather crystalline and its hydration sensitivity, expressed as the ratio of the elastic modulus of wet to that of dry fibre, is 0.53. The ά-helical fibroins are predicted to have an antiparallel tetrameric configuration that is shown as a possible structural model. The molecular structure of ά-helical proteins maximizes their robustness with minimal use of building materials. In conclusion, it appears that the composition, molecular topology and amino acid content and sequence are a highly conserved feature in the evolution of silk in Apis species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Ackbarow, T., Chen, X., Keten, S., Buehler, M.J. (2007) Hierarchies, multiple energy barriers and robustness govern the fracture mechanics of ά-helical and β-sheet protein domains. Proc. Nat. Acad. Sci. 104, 16410–16415

    Article  PubMed  CAS  Google Scholar 

  • Ackbarow, T., Sen, D., Thaulow, C., Buehler, M.J. (2009) alpha-Helical protein networks are self protective and flaw-tolerant. PLoS One 4(6), e6015. doi:10.1371/journal.pone.0006015

    Article  PubMed  Google Scholar 

  • Andersen, S.O., Weis-Fogh, T. (1964) Resilin. A rubberlike protein in arthropod cuticle. Adv. Insect Physiol. 2, 1–65

    Article  CAS  Google Scholar 

  • Arnhart, L. (1906) Die Zwischenräume zwischen den Wachsdrussenzellender Honigbiene. Zool. Anz. 30, 719–721

    Google Scholar 

  • Atkins, E.D.T. (1967) A four-strand coiled-coil model for some insect fibrous proteins. J Mol Biol 24, 139–141

    Article  CAS  Google Scholar 

  • Buehler, M.J., Ackbarow, T. (2007) Fracture mechanics of protein materials. Mater Today 10, 48–58

    Article  Google Scholar 

  • Buehler, M.J., Keten, S. (2008) Elasticity, strength and resilience: A comparative study on mechanical signatures of α-helix, β-sheet and tropocollagen domains. Nano Res 1, 63–71

    Article  CAS  Google Scholar 

  • Chauvin, R. (1962) Sur le noircissement des vieilles cires. Ann. Abeille 5, 59–63

    Article  Google Scholar 

  • Flower, N.E., Kenchington, W. (1967) Studies on insect fibrous proteins: the larval silk of Apis, Bombus and Vespa (Hymenoptera: Aculeata). J. R. Micro. Soc. 86, 297–310

    Article  CAS  Google Scholar 

  • Hepburn, H.R. (1986) Honeybees and wax. Springer, Berlin

    Book  Google Scholar 

  • Hepburn, H.R., Kurstjens, S.P. (1984) On the strength of propolis (bee glue). Naturwissenschaften 71, 591–592

    Article  Google Scholar 

  • Hepburn, H.R., Kurstjens, S.P. (1988) The combs of honeybees as composite materials. Apidologie 19, 25–36

    Article  Google Scholar 

  • Hepburn, H.R., Chandler, H.D., Davidoff, M.R. (1979) Extensometric properties of insect fibroins: the green lacewing cross-β, honeybee ά-helical and greater waxmoth parallel-β conformations. Insect Biochem. 9, 69–77

    Article  CAS  Google Scholar 

  • Hepburn, H.R., Armstrong, E., Kurstjens, S.P. (1983) The ductility of native beeswax is optimally related to honeybee colony temperature. S. Afr. J. Sci. 79, 416–417

    Google Scholar 

  • Hepburn, H.R., Muerrle, T., Radloff, S.E. (2007) The cell bases of honeybee combs. Apidologie 38, 268–271. U KRSTJENS S.P., 1983

    Google Scholar 

  • Huber F. (1814) Nouvelles Observations sur les Abeilles. [English translation 1926] Dadant, Hamilton

  • Jay, S.C. (1964) The cocoon of the honeybee, Apis mellifera L. Canad. Ent. 96, 784–792

    Article  Google Scholar 

  • Kurstjens, S.P., Hepburn, H.R., Schoening, F.R.L., Davidson, B.C. (1985) The conversion of wax scales into comb wax by African honeybees. J. Comp. Physiol. B156, 95–102

    Google Scholar 

  • Kurstjens, S.P., McClain, E., Hepburn, H.R. (1990) The proteins of beeswax. Naturwissenschaften 77, 34–35

    Article  CAS  Google Scholar 

  • Lucas, F., Rudall, K.M. (1968) Extracellular fibrous proteins: the silks. In: Florkin, M., Stotz, E.H. (eds.) Comprehensive biochemistry, vol. 26, pp. 475–558. Elsevier, Amsterdam

    Google Scholar 

  • Lucas, F., Shaw, J.T.B., Smith, S.G. (1960) Comparative studies of fibroins: I. The amino acid composition of various fibroins and its significance in relation to their crystal structure and taxonomy. J Mol Biol 2, 339–349

    Article  PubMed  CAS  Google Scholar 

  • Pirk, C.W.W., Hepburn, H.R., Radloff, S.E., Tautz, J. (2004) Honeybee combs: construction through a liquid equilibrium process? Naturwissenschaften 91, 350–353

    Article  PubMed  CAS  Google Scholar 

  • Rudall, K.M. (1962) Silk and other cocoon proteins. In: Florkin, M., Mason, H.S. (eds.) Comparative biochemistry, vol. IV, pp. 397–433. Academic, New York

    Google Scholar 

  • Rudall, K.M. (1965) Aspects of Insect Biochemistry. Academic, London

    Google Scholar 

  • Shao, Z.Z., Vollrath, F. (2002) Materials: surprising strength of silkworm silk. Nature 418, 741

    Article  PubMed  CAS  Google Scholar 

  • Shi, J., Lua, S., Du, N., Liu, X., Song, J. (2008) Identification, recombinant production and structural characterization of four silk proteins from the Asiatic honeybee Apis cerana. Biomaterials 29, 2820–2828

    Article  PubMed  CAS  Google Scholar 

  • Silva-Zacarin, E.C.M., De Moraes, R.L.M.S., Taboga, S.R. (2003) Silk formation mechanisms in the larval salivary glands of Apis mellifera (Hymenoptera: Apidae). J. Biosci. Bangalore. 28, 753–764

    Article  Google Scholar 

  • Sutherland, T.D., Campbell, P.M., Weisman, S., Trueman, H.E., Sriskantha, A., Wanjura, W.J., Haritos, V.S. (2006) A highly divergent gene cluster in honeybees encodes a novel silk family. Genome Res 16, 1414–1421. Coil

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, T.D., Weisman, S., Trueman, H.E., Sriskantha, A., Trueman, J.W.H., Haritos, V.S. (2007) Conservation of essential design features in coiled-coil silks. Mol Biol Evol 24, 2424–2432

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, T.D., Young, J., Weisman, S., Hayashi, C.Y., Merrit, D. (2010a) Insect silk: one name, many materials. Annu. Rev. Entomol. 55, 171–188

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, T.D., Haritos, V.S., Trueman, H.E., Sriskantha, A., Weisman, S., Campbell, P.M. (2010) United States Patent Application Publication. US2010/0100975 A1. April 22 2010

  • Sutherland, T.D., Church, J.S., Hu, X., Huson, M.G., Kaplan, D.L., Weisman, S. (2011a) Single honeybee silk protein mimics properties of multi-protein silk. PLoS One 6(2), 16489. doi:10.1371/journal.pone.0016489

    Article  Google Scholar 

  • Sutherland, T.D., Weisman, S., Walker, A.A., Mudie, S.T. (2011b) The coiled-coil silk of bees, ants, and hornets. Biopolymers 97, 446–454

    Article  PubMed  Google Scholar 

  • Sutherland, TD, Weisman, S, Walker, AA, and Mudie, ST (2012). Invited review: The coiled coil silk of bees, ants, and hornets. Biopolymers 97, 446–454

    Google Scholar 

  • Verlich, A.V. (1930) Entwicklungsmechanische Studien an Bienenlarven. Z. Wiss. Zool. 136, 210–222

    Google Scholar 

  • Vollrath, F., Knight, D.P. (2001) Liquid crystalline spinning of spider silk. Nature 410, 541–548

    Article  PubMed  CAS  Google Scholar 

  • Wainwright, S.A., Biggs, W.D., Currey, J.D., Gosline, J.M. (1976) Mechanical design in organisms. Edward Arnold, London

    Google Scholar 

  • Warwicker, J.O. (1960) Comparative studies of fibroins: II. The crystal structures of various fibroins. J Mol Biol 2, 350–362

    Article  PubMed  CAS  Google Scholar 

  • Woolfson, D.N. (2005) The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70, 79–112

    Article  PubMed  CAS  Google Scholar 

  • Zhang, K., Si, F.W., Duan, H.L., Karihaloo, B.L., Wang, J. (2010a) Hierarchical, multilayered cell walls reinforced by recycled silk cocoons enhance the structural integrity of honeybee combs. Proc. Nat. Acad. Sci. 107, 9502–9506

    Article  PubMed  CAS  Google Scholar 

  • Zhang, K., Si, F.W., Duan, H.L., Wang, J. (2010b) Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomater 6, 2165–2171

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tara Sutherland for kind permission to use some of her previously published figures and to TS, Colleen Hepburn and Catherine Sole for their comments on an earlier version of this manuscript. We acknowledge permission from John Wiley and Sons to use published figures from Sutherland et al. (2011b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian W. W. Pirk.

Additional information

Manuscript editor: Peter Rosenkranz

Propriétés physiques de la soie produite par les abeilles: synthèse des connaissances

Abeille / Apidae / soie / fibroïne / hélice alpha

Physikalische Eigenschaften der Seide von Honigbienen: Ein Review.

Apis / Honigbiene / alpha-Helix / Fibroin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hepburn, H.R., Duangphakdee, O. & Pirk, C.W.W. Physical properties of honeybee silk: a review. Apidologie 44, 600–610 (2013). https://doi.org/10.1007/s13592-013-0209-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-013-0209-6

Keywords

Navigation