Skip to main content
Log in

Lack of lethal and sublethal effects of Cry1Ac Bt-toxin on larvae of the stingless bee Trigona spinipes

  • Original article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Stingless bees, particularly Trigona spinipes, are important pollinators in tropical ecosystems and are potentially affected by environmental contaminants. In this study, we tested the possible negative effects on T. spinipes larvae of the ingestion of a diet contaminated with Cry1Ac Bt-toxin. This toxin is expressed in genetically modified cotton plants. A method of rearing stingless bee larvae is described in this paper. The larvae were provided with either pure larval diet, diluted larval diet, or larval diet diluted in a Cry1Ac solution compatible with the lethal pest-exposure level (50 μg/mL). Cry1Ac ingestion did not impair the development of worker larvae, but the diluted diet slightly increased larval mortality. These results indicate that harmful effects on stingless bee larvae due to the ingestion of pollen-expressed Cry1Ac toxin are unlikely under field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Allison, P.D. (1998) Survival analysis using the SAS System—a practical guide. SAS Institute, Cary

    Google Scholar 

  • Almeida, M.C., Laroca, S. (1988) Trigona spinipes (Apidae, Meliponinae): taxonomia, bionomia e relações tróficas em áreas restritas. Acta Biol. Par. 17, 67–108

    Google Scholar 

  • Arpaia, S., Imperatriz-Fonseca, V.L., Pires, C.S.S., Silveira, F.S. (2006) Non-target and biodiversity impacts on pollinators and flower visiting insects. In: Hilbeck, A., Andow, D., Fontes, E. (eds.) Environmental risk assessment of genetically modified organisms: methodologies for assessing Bt cotton in Brazil, pp. 155–174. CABI, Cambridge

    Chapter  Google Scholar 

  • Babendreier, D., Kalberer, N., Romeis, J., Fluri, P., Bigler, F. (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants. Apidologie 35, 293–300

    Article  Google Scholar 

  • Babendreier, D., Reichhart, B., Romeis, J., Bigler, F. (2008) Impact of insecticidal proteins expressed in transgenic plants on bumblebee microcolonies. Entomol. Exp. Appl. 126, 148–157

    Article  CAS  Google Scholar 

  • Bosch, J., Vicens, N. (2002) Body size as an estimator of production costs in a solitary bee. Ecol. Entomol. 27, 129–137

    Article  Google Scholar 

  • Buschini, M.L.T., Campos, L.A.O. (1995) Caste determination in Trigona spinipes (Hymenoptera, Apidae): influence of the available food and the juvenile hormone. Rev. Bras. Biol. 55, 121–129

    Google Scholar 

  • Cerda, H., Sayyed, A.H., Wright, D.H. (2003) Laboratory culture conditions affect stability of resistance to Bacillus thunrigiensis Cry1Ac in Plutella xylostella (Lep., Plutellidae). J. Appl. Entomol. 127, 142–145

    Article  Google Scholar 

  • Dick, C.W. (2001) Habitat change, African honeybees and fecundity in the Amazonian tree Dinizia excelsa (Fabaceae). In: Bierregaard, R.O., Gascon, C., Lovejoy, T.E., Mesquita, R. (eds.) Lessons from Amazonia: the ecology and conservation of a fragmented forest, pp. 146–157. Yale University Press, New Haven

    Google Scholar 

  • Dong, H.Z., Li, W.J. (2007) Variability of endotoxin expression in Bt transgenic cotton. J. Agron. Crop. Sci. 193, 21–29

    Article  CAS  Google Scholar 

  • Duan, J.J., Marvier, M., Huesing, J., Dively, G., Huang, Z.Y. (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PLoS One 3, e1415. doi:10.1371/journal.pone.0001415

    Article  PubMed  Google Scholar 

  • Greenplate, J.T. (1997) Response to reports of early damage in 1996 commercial Bt-transgenic cotton (Bollgard®) plantings. Soc. Invertebr. Pathol. Newsl. 29, 15–18

    Google Scholar 

  • Han, P., Chang-Ying, N., Chao-Liang, L., Jin-Jie, C., Desneux, N. (2010) Quantification of toxins in a Cry1Ac+CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology 19, 1452–1459

    Article  PubMed  CAS  Google Scholar 

  • Hanley, A.V., Huang, Z.Y., Pett, W.L. (2003) Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonela. J. Apic. Res. 42, 77–81

    Google Scholar 

  • James, C. (2011) Global Status of Commercialized Biotech/GM Crops: 2011. ISAAA Brief No. 43. ISAAA, Ithaca

    Google Scholar 

  • Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., Tscharntke, T. (2007) Importance of pollinators in changing landscapes for world crops. Proc. Soc. Lond. B. Biol. 274, 303–313. doi:10.1098/rspb.2006.3721

    Article  Google Scholar 

  • Klostermeyer, E.C., Mech, S.J., Rasmussen, W.B. (1973) Sex and weight of Megachile rotundata (Hymenoptera: Megachilidae) progeny associated with provision weights. J. Kansas Entomol. Soc. 46, 536–548

    Google Scholar 

  • Konrad, R., Ferry, N., Gatehouse, A.M.R., Babendreier, D. (2008) Potential Effects of oilseed rape expressing oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee Osmia bicornis. PLoS One 3, e2664. doi:10.1371/journal.pone.0002664

    Article  PubMed  Google Scholar 

  • Konrad, R., Connor, M., Ferry, N., Gatehouse, A.M.R., Babendreier, D. (2009) Impact of transgenic oilseed rape expressing oryzacystatin-1 (OC-1) and of insecticidal proteins on longevity and digestive enzymes of the solitary bee Osmia bicornis. J. Insect Physiol. 55, 305–313

    Article  PubMed  CAS  Google Scholar 

  • Lehrman, A. (2007) Does pea lectin expressed transgenically in oilseed rape (Brassica napus) influence honeybee (Apis mellifera) larvae? Environ. Biosaf. Res. 6, 1–8

    Article  Google Scholar 

  • Lichtenberg, E.M., Hrncir, M., Turatti, I.C., Nieh, J.C. (2011) Olfactory eavesdropping between two competing stingless bee species. Behav. Ecol. Sociobiol. 65, 763–774

    Article  PubMed  Google Scholar 

  • Lima, M.A.P., Pires, C.S.S., Guedes, R.N.C., Nakasu, E.Y.T., Lara, M.S., Fontes, E.M.G., Sujii, E.R., Dias, S.C., Campos, L.A.O. (2011) Does Cry1Ac BT-toxin impair development of worker larvae of Africanized honey bee? J. Appl. Entomol. 135, 415–422

    Article  CAS  Google Scholar 

  • Malone, L.A., Tregidga, E.L., Todd, J.H., Burgess, E.P.J., Philip, B.A., Markwick, N.P., Poulton, J., Christeller, J.T., Lester, M.T., Gatehouse, H.S. (2002) Effects of ingestion of a biotin-binding protein on adult and larval honey bees. Apidologie 33, 447–458

    Article  CAS  Google Scholar 

  • Malone, L.A., Todd, J.H., Burgess, E.P.J., Christeller, J.T. (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie 35, 655–664

    Article  CAS  Google Scholar 

  • Morandin, L.A., Winston, M. (2003) Effects of novel pesticides on bumble bee (Hymenoptera: Apidae) colony health and foraging ability. Environ. Entomol. 32, 555–563

    Article  CAS  Google Scholar 

  • Motulsky, H.J. (2007) Prism 5 Guide. GraphPad Software, San Diego

    Google Scholar 

  • Nieh, J.C., Barreto, L.S., Contrera, F.A.L., Imperatriz-Fonseca, V.L. (2004a) Olfactory eavesdropping by a competitively foraging stinglees bee, Trigona spinipes. Proc. R. Soc. Lond. B. 271, 1633–1640

    Article  Google Scholar 

  • Nieh, J.C., Contrera, F.A.L., Yoon, R.R., Barreto, L.S., Imperatriz-Fonseca, V.L. (2004b) Polarized short odor-trail recruitment communication by a stingless bee, Trigona spinipes. Behav. Ecol. Sociobiol. 56, 435–448

    Article  Google Scholar 

  • Nieh, J.C., Kruizinga, K., Barreto, L.S., Contrera, F.A.L., Imperatriz-Fonseca, V.L. (2005) Effect of group size on the agression strategy of an extirpating stingless bee, Trigona spinipes. Insectes Soc. 52, 147–154

    Article  Google Scholar 

  • Pyke, G.H. (1978) Optimal body size in bumblebees. Oecologia 34, 255–266

    Article  Google Scholar 

  • Quezada-Euán, J.J.G., Lopez-Velasco, A., Perez-Balam, J., Moo-Valle, H., Velazquez-Madrazo, A., Paxton, R.J. (2011) Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insectes Soc. 58, 31–38

    Article  Google Scholar 

  • Ramirez-Romero, R., Desneux, N., Decourtye, A., Chaffiol, A., Pham-Delegue, M.H. (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol. Environ. Saf. 70, 327–333

    Article  PubMed  CAS  Google Scholar 

  • Sakagami, S.F. (1981) Stingless Bees. In: Hermann, H.R. (ed.) Social insects, vol. 3. Academic, New York

    Google Scholar 

  • SAS Institute (2008) SAS/STAT user’s guide. SAS Institute, Cary, NC, USA

  • Slaa, E.J., Chaves, L.A.S., Malagodi-Braga, K.S., Hofstede, F.E. (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37, 293–315

    Article  Google Scholar 

  • Velthuis, H.H.W., Cortopassi-Laurino, M., Pereboom, Z., Imperatriz-Fonseca, V. (2003) Speciation, development, and the conservative egg of the stingless bee genus Melipona. Proc. Sect. Exp. Appl. Entomol. 14, 53–57

    Google Scholar 

  • Wcislo, W.T., Cane, J.H. (1996) Floral resource utilization by solitary bees (Hymenoptera: Apoidea) and exploitation of their stored foods by natural enemies. Annu. Rev. Entomol. 41, 257–286

    Google Scholar 

  • Wilkinson, M.J. (2004) Abandoning ‘responsive’ GM risk assessment. Trends Biotechnol. 22, 438–439

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the EMBRAPA Genetic Resources and Biotechnology Center, especially Drs. E. Fontes and E. Sujii, for fruitful discussions. Comments by Professor S.C. Dias, Catholic University of Brasília, substantially improved the first version of the manuscript. We also acknowledge E. Y. T. Nakasu and M. S. Lara for helping to rear the caterpillars and the stingless bee larvae. The comments and suggestions provided by the editor and two anonymous reviewers were greatly appreciated. The study was sponsored by the National Council of Scientific and Technological Development (CNPq) and the Minas Gerais State Foundation for Research Aid (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Augusta P. Lima.

Additional information

Manuscript editor: Monique Gauthier

Pas d’effets létal ou sublétal de la toxine-Bt Cry1Ac observés sur les larves de l’abeille sans aiguillon, Trigona spinipes

Toxine de Bacillus thuringiensis / plante transgénique / impact environnemental / pollinisateur indigène / évaluation des risques

Cry1Ac Bt-toxin hat keine letalen oder subletalen Effekte auf Larven der stachellosen Biene Trigona spinipes

Bacillus thuringiensis -Toxin / transgene Pflanzen / Umwelteinwirkung / einheimische Bestäuber / Risikoabschätzung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, M.A.P., Pires, C.S.S., Guedes, R.N.C. et al. Lack of lethal and sublethal effects of Cry1Ac Bt-toxin on larvae of the stingless bee Trigona spinipes . Apidologie 44, 21–28 (2013). https://doi.org/10.1007/s13592-012-0151-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13592-012-0151-z

Keywords

Navigation