Skip to main content
Log in

Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Peroxiredoxin 2 (Prx2) is a redox enzyme that is abundantly expressed in red blood cells (RBCs) and has been the focus of clinical attention for monitoring the oxidative status. We previously developed a method to quantify the reduced and hyperoxidized forms of Prx2 in human RBCs using reverse-phase high-performance liquid chromatography (HPLC). In the present study, we investigated the hyperoxidative status of Prx2 at the molecular level in a post-translational modification analysis using a liquid chromatography–tandem mass spectrometry (LC–MS/MS) system. The LC–MS/MS analysis of the trypsin digests of Prx2 fractionated by reverse-phase HPLC demonstrated that the cysteine-51 residue (Cys-51) of the protein was modified with the hyperoxidative functional groups, sulfinic acid (–SO2H) and sulfonic acid (–SO3H), in RBCs treated with tert-butyl hydroperoxide (t-BHP). Furthermore, a selected ion monitoring (SIM) analysis quantitatively showed that sulfinic acid- and sulfonic acid-induced modifications in Prx2 Cys-51 were increased by the treatment with the oxidant. It was demonstrated that the peroxidatic cysteine of Prx2 separated using our HPLC system for oxidative monitoring was hyperoxidized into sulfinic acid and sulfonic acid in RBCs under an oxidative stress condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wood ZA, Schröder E, Robin Harris J, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28:32–40.

    Article  CAS  PubMed  Google Scholar 

  2. Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic Biol Med. 2005;38:1543–52.

    Article  CAS  PubMed  Google Scholar 

  3. Poynton RA, Hampton MB. Peroxiredoxins as biomarkers of oxidative stress. Biochim Biophys Acta. 2014;1840:906–12.

    Article  CAS  PubMed  Google Scholar 

  4. Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature. 2003;424:561–5.

    Article  CAS  PubMed  Google Scholar 

  5. Lee TH, Kim SU, Yu SL, Kim SH, Park DS, Moon HB, Dho SH, Kwon KS, Kwon HJ, Han YH, Jeong S, Kang SW, Shin HS, Lee KK, Rhee SG, Yu DY. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood. 2003;101:5033–8.

    Article  CAS  PubMed  Google Scholar 

  6. Han YH, Kim HS, Kim JM, Kim SK, Yu DY, Moon EY. Inhibitory role of peroxiredoxin II (Prx II) on cellular senescence. FEBS Lett. 2005;579:4897–902.

    Article  CAS  PubMed  Google Scholar 

  7. Lee W, Choi KS, Riddell J, Ip C, Ghosh D, Park JH, Park YM. Human peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J Biol Chem. 2007;282:22011–22.

    Article  CAS  PubMed  Google Scholar 

  8. Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ, Kim K, Rhee SG. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid. J Biol Chem. 2002;277:38029–36.

    Article  CAS  PubMed  Google Scholar 

  9. Chevallet M, Wagner E, Luche S, van Dorsselaer A, Leize-Wagner E, Rabilloud T. Regeneration of peroxiredoxins during recover after oxidative stress: only some overoxidized peroxiredoxins can be reduced during recovery after oxidative stress. J Biol Chem. 2003;278:37146–53.

    Article  CAS  PubMed  Google Scholar 

  10. Cesaratto L, Vascotto C, D’Ambrosio C, Scaloni A, Baccarani U, Paron I, Damante G, Calligaris S, Quadrifoglio F, Tiribelli C, Tell G. Overoxidation of peroxiredoxins as an immediate and sensitive marker of oxidative stress in HepG2 cells and its application to the redox effects induced by ischemia/reperfusion in human liver. Free Radic Res. 2005;39:255–68.

    Article  CAS  PubMed  Google Scholar 

  11. Peskin AV, Dickerhof N, Poynton RA, Paton LN, Pace PE, Hampton MB, Winterbourn CC. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine. J Biol Chem. 2013;288:14170–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haynes AC, Qian J, Reisz JA, Furdui CM, Lowther WT. Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation. J Biol Chem. 2013;288:29714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshida Y, Yoshikawa A, Kinumi T, Ogawa Y, Saito Y, Ohara K, Yamamoto H, Imai Y, Niki E. Hydroxyoctadecadienoic acid and oxidatively modified peroxiredoxins in the blood of Alzheimer’s disease patients and their potential as biomarkers. Neurobiol Aging. 2009;30:174–85.

    Article  CAS  PubMed  Google Scholar 

  14. Kwon HS, Bae YJ, Moon KA, Lee YS, Lee T, Lee KY, Kim TB, Park CS, Moon HB, Cho YS. Hyperoxidized peroxiredoxins in peripheral blood mononuclear cells of asthma patients is associated with asthma severity. Life Sci. 2012;90:502–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ogasawara Y, Ohminato T, Nakamura Y, Ishii K. Structural and functional analysis of native peroxiredoxin 2 in human red blood cells. Int J Biochem Cell Biol. 2012;44:1072–7.

    Article  CAS  PubMed  Google Scholar 

  16. Ishida YI, Takikawa M, Suzuki T, Nagahama M, Ogasawara Y. Irreversible hyperoxidation of peroxiredoxin 2 is caused by tert-butyl hydroperoxide in human red blood cells. FEBS Open Bio. 2014;4:848–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ogasawara Y, Ishida Y, Takikawa M, Funaki Y, Suzuki T, Koike S. A simple high performance liquid chromatography method for quantitatively determining the reduced form of peroxiredoxin 2 and the mass spectrometric analysis of its oxidative status. J Chromatogr B Anal Technol Biomed Life Sci. 2015;997:136–41.

    Article  CAS  Google Scholar 

  18. Rinalducci S, D’Amici GM, Blasi B, Zolla L. Oxidative stress-dependent oligomeric status of erythrocyte peroxiredoxin II (PrxII) during storage under standard blood banking conditions. Biochimie. 2011;93:845–53.

    Article  CAS  PubMed  Google Scholar 

  19. Rinalducci S, D’Amici GM, Blasi B, Vaglio S, Grazzini G, Zolla L. Peroxiredoxin-2 as a candidate biomarker to test oxidative stress levels of stored red blood cells under blood bank conditions. Transfusion. 2011;51:1439–49.

    Article  CAS  PubMed  Google Scholar 

  20. Schröder E, Littlechild JA, Lebedev AA, Errington N, Vagin AA, Isupov MN. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. Structure. 2000;8:605–15.

    Article  PubMed  Google Scholar 

  21. Takeshita M, Ishida Y, Akamatsu E, Ohmori Y, Sudoh M, Uto H, Tsubouchi H, Kataoka H. Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J Biol Chem. 2009;284:21165–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ishida Y, Yamasaki M, Yukizaki C, Nishiyama K, Tsubouchi H, Okayama A, Kataoka H. Carnosol, rosemary ingredient, induces apoptosis in adult T-cell leukemia/lymphoma cells via glutathione depletion: proteomic approach using fluorescent two-dimensional differential gel electrophoresis. Hum Cell. 2014;27:68–77.

    Article  CAS  PubMed  Google Scholar 

  23. Michalski A, Damoc E, Hauschild JP, Lange O, Wieghaus A, Makarov A, Nagaraj N, Cox J, Mann M, Horning S. Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol Cell Proteomics. 2011;10(M111):011015.

    PubMed  Google Scholar 

  24. Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics. 2012;11:1709–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol. 2010;11:427–39.

    Article  CAS  PubMed  Google Scholar 

  26. Yang J, Carroll KS, Liebler DC. The expanding landscape of the thiol redox proteome. Mol Cell Proteomics. 2016;15:1–11.

    Article  PubMed  Google Scholar 

  27. Rabilloud T, Heller M, Gasnier F, Luche S, Rey C, Aebersold R, Benahmed M, Louisot P, Lunardi J. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J Biol Chem. 2002;277:19396–401.

    Article  CAS  PubMed  Google Scholar 

  28. Wagner E, Luche S, Penna L, Chevallet M, Van Dorsselaer A, Leize-Wagner E, Rabilloud T. A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress. Biochem J. 2002;366:777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cumming RC, Dargusch R, Fischer WH, Schubert D. Increase in expression levels and resistance to sulfhydryl oxidation of peroxiredoxin isoforms in amyloid beta-resistant nerve cells. J Biol Chem. 2007;282:30523–34.

    Article  CAS  PubMed  Google Scholar 

  30. Biteau B, Labarre J, Toledano MB. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 2003;425:980–4.

    Article  CAS  PubMed  Google Scholar 

  31. Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG. Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem. 2004;279:50994–1001.

    Article  CAS  PubMed  Google Scholar 

  32. Ishida Y, Uto H, Okayama A, Tsubouchi H. Biomarker discovery for cancer diagnosis using serum proteomic analysis: from basic research to clinical application. In: Lang JK, editor. Handbook on mass spectrometry: instrumentation, data and analysis, and applications. New York: Nova Science Publishers Inc.; 2009. p. 75–111.

    Google Scholar 

  33. Picotti P, Aebersold R. Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods. 2012;9:555–66.

    Article  CAS  PubMed  Google Scholar 

  34. Ebhardt HA, Root A, Sander C, Aebersold R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics. 2015;15:3193–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gourlay LJ, Bhella D, Kelly SM, Price NC, Lindsay JG. Structure-function analysis of recombinant substrate protein 22 kDa (SP-22). A mitochondrial 2-CYS peroxiredoxin organized as a decameric toroid. J Biol Chem. 2003;278:32631–7.

    Article  CAS  PubMed  Google Scholar 

  36. Pace PE, Peskin AV, Han MH, Hampton MB, Winterbourn CC. Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide-isomerase ERp46. Biochem J. 2013;453:475–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Shio Watanabe (Thermo Fisher Scientific Inc.) for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yo-ichi Ishida or Yuki Ogasawara.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, Yi., Aki, M., Fujiwara, S. et al. Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids. Human Cell 30, 279–289 (2017). https://doi.org/10.1007/s13577-017-0171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-017-0171-0

Keywords

Navigation