Skip to main content

Advertisement

Log in

Establishment and characterization of a platinum- and paclitaxel-resistant high grade serous ovarian carcinoma cell line

  • Cell Line
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

High grade serous ovarian cancer (HGSOC) patients have a high recurrence rate after surgery and adjuvant chemotherapy due to inherent or acquired drug resistance. Cell lines derived from HGSOC tumors that are resistant to chemotherapeutic agents represent useful pre-clinical models for drug discovery. Here, we describe establishment of a human ovarian carcinoma cell line, which we term WHIRC01, from a patient-derived mouse xenograft established from a chemorefractory HGSOC patient who did not respond to carboplatin and paclitaxel therapy. This newly derived cell line is platinum- and paclitaxel-resistant with cisplatin, carboplatin, and paclitaxel half-maximal lethal doses of 15, 130, and 20 µM, respectively. Molecular characterization of this cell line was performed using targeted DNA exome sequencing, transcriptomics (RNA-seq), and mass spectrometry-based proteomic analyses. Results from exomic sequencing revealed mutations in TP53 consistent with HGSOC. Transcriptomic and proteomic analyses of WHIRC01 showed high level of alpha-enolase and vimentin, which are associated with cell migration and epithelial–mesenchymal transition. WHIRC01 represents a chemorefractory human HGSOC cell line model with a comprehensive molecular profile to aid future investigations of drug resistance mechanisms and screening of chemotherapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30. doi:10.3322/caac.21332.

    Article  PubMed  Google Scholar 

  2. Soslow RA. Histologic subtypes of ovarian carcinoma: an overview. Int J Gynecol Pathol. 2008;27(2):161–74. doi:10.1097/PGP.0b013e31815ea812.

    PubMed  Google Scholar 

  3. Heintz AP, Odicino F, Maisonneuve P, Quinn MA, Benedet JL, Creasman WT, et al. Carcinoma of the ovary. FIGO 26th annual report on the results of treatment in gynecological cancer. Int J Gynaecol Obstet. 2006;95(Suppl 1):S161–92. doi:10.1016/S0020-7292(06)60033-7.

    Article  PubMed  Google Scholar 

  4. Ozols RF. Systemic therapy for ovarian cancer: current status and new treatments. Semin Oncol. 2006;33(2 Suppl 6):S3–11. doi:10.1053/j.seminoncol.2006.03.011.

    Article  CAS  PubMed  Google Scholar 

  5. Martin LP, Schilder RJ. Management of recurrent ovarian carcinoma: current status and future directions. Semin Oncol. 2009;36(2):112–25. doi:10.1053/j.seminoncol.2008.12.003.

    Article  PubMed  Google Scholar 

  6. Itamochi H, Kato M, Nishimura M, Oishi T, Shimada M, Sato S, et al. Establishment and characterization of a novel ovarian serous adenocarcinoma cell line, TU-OS-4, that overexpresses EGFR and HER2. Hum Cell. 2012;25(4):111–5. doi:10.1007/s13577-012-0048-1.

    Article  CAS  PubMed  Google Scholar 

  7. Ouellet V, Zietarska M, Portelance L, Lafontaine J, Madore J, Puiffe ML, et al. Characterization of three new serous epithelial ovarian cancer cell lines. BMC Cancer. 2008;8:152. doi:10.1186/1471-2407-8-152.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pan Z, Hooley J, Smith DH, Young P, Roberts PE, Mather JP. Establishment of human ovarian serous carcinomas cell lines in serum free media. Methods. 2012;56(3):432–9. doi:10.1016/j.ymeth.2012.03.003.

    Article  CAS  PubMed  Google Scholar 

  9. Sato S, Itamochi H, Oumi N, Chiba Y, Oishi T, Shimada M, et al. Establishment and characterization of a novel ovarian clear cell carcinoma cell line, TU-OC-2, with loss of ARID1A expression. Hum Cell. 2016;. doi:10.1007/s13577-016-0138-6.

    Google Scholar 

  10. Alama A, Barbieri F, Favre A, Cagnoli M, Noviello E, Pedulla F, et al. Establishment and characterization of three new cell lines derived from the ascites of human ovarian carcinomas. Gynecol Oncol. 1996;62(1):82–8. doi:10.1006/gyno.1996.0194.

    Article  CAS  PubMed  Google Scholar 

  11. Hamilton TC, Young RC, McKoy WM, Grotzinger KR, Green JA, Chu EW, et al. Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res. 1983;43(11):5379–89.

    CAS  PubMed  Google Scholar 

  12. Buick RN, Pullano R, Trent JM. Comparative properties of five human ovarian adenocarcinoma cell lines. Cancer Res. 1985;45(8):3668–76.

    CAS  PubMed  Google Scholar 

  13. Shenhua X, Lijuan Q, Hanzhou N, Xinghao N, Chihong Z, Gu Z, et al. Establishment of a highly metastatic human ovarian cancer cell line (HO-8910PM) and its characterization. J Exp Clin Cancer Res. 1999;18(2):233–9.

    CAS  PubMed  Google Scholar 

  14. Yabushita H, Ueno N, Sawaguchi K, Higuchi K, Noguchi M, Ishihara M. Establishment and characterization of a new human cell-line (AMOC-2) derived from a serous adenocarcinoma of ovary. Nihon Sanka Fujinka Gakkai Zasshi. 1989;41(7):888–94.

    CAS  PubMed  Google Scholar 

  15. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat Commun. 2013;4:2126. doi:10.1038/ncomms3126.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anglesio MS, Wiegand KC, Melnyk N, Chow C, Salamanca C, Prentice LM, et al. Type-specific cell line models for type-specific ovarian cancer research. PLoS One. 2013;8(9):e72162. doi:10.1371/journal.pone.0072162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beaufort CM, Helmijr JC, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, Besselink N, et al. Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One. 2014;9(9):e103988. doi:10.1371/journal.pone.0103988.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cancer Genome Atlas Research. N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. doi:10.1038/nature10166.

    Article  Google Scholar 

  19. Friedlander ML, Russell K, Millis S, Gatalica Z, Bender R, Voss A. Molecular profiling of clear cell ovarian cancers: identifying potential treatment targets for clinical trials. Int J Gynecol Cancer. 2016;26(4):648–54. doi:10.1097/IGC.0000000000000677.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 2010;363(16):1532–43. doi:10.1056/NEJMoa1008433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mackenzie R, Kommoss S, Winterhoff BJ, Kipp BR, Garcia JJ, Voss J, et al. Targeted deep sequencing of mucinous ovarian tumors reveals multiple overlapping RAS-pathway activating mutations in borderline and cancerous neoplasms. BMC Cancer. 2015;15:415. doi:10.1186/s12885-015-1421-8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. McDermott M, Eustace AJ, Busschots S, Breen L, Crown J, Clynes M, et al. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: a practical guide with case studies. Front Oncol. 2014;4:40. doi:10.3389/fonc.2014.00040.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007.

    Article  PubMed  PubMed Central  Google Scholar 

  24. de Hoon MJ, Imoto S, Nolan J, Miyano S. Open source clustering software. Bioinformatics. 2004;20(9):1453–4. doi:10.1093/bioinformatics/bth078.

    Article  PubMed  Google Scholar 

  25. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 1998;95(25):14863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verhaak RG, Tamayo P, Yang JY, Hubbard D, Zhang H, Creighton CJ, et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J Clin Invest. 2013;123(1):517–25. doi:10.1172/JCI65833.

    CAS  PubMed  Google Scholar 

  27. Teng PN, Wang G, Hood BL, Conrads KA, Hamilton CA, Maxwell GL, et al. Identification of candidate circulating cisplatin-resistant biomarkers from epithelial ovarian carcinoma cell secretomes. Br J Cancer. 2014;110(1):123–32. doi:10.1038/bjc.2013.687.

    Article  CAS  PubMed  Google Scholar 

  28. Flynn RL, Zou L. ATR: a master conductor of cellular responses to DNA replication stress. Trends Biochem Sci. 2011;36(3):133–40. doi:10.1016/j.tibs.2010.09.005.

    Article  CAS  PubMed  Google Scholar 

  29. Teng PN, Bateman NW, Darcy KM, Hamilton CA, Maxwell GL, Bakkenist CJ, et al. Pharmacologic inhibition of ATR and ATM offers clinically important distinctions to enhancing platinum or radiation response in ovarian, endometrial, and cervical cancer cells. Gynecol Oncol. 2015;136(3):554–61. doi:10.1016/j.ygyno.2014.12.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang CP, Galbiati F, Volonte D, Horwitz SB, Lisanti MP. Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett. 1998;439(3):368–72.

    Article  CAS  PubMed  Google Scholar 

  31. Slaughter K, Holman LL, Thomas EL, Gunderson CC, Lauer JK, Ding K, et al. Primary and acquired platinum-resistance among women with high grade serous ovarian cancer. Gynecol Oncol. 2016;. doi:10.1016/j.ygyno.2016.05.020.

    Google Scholar 

  32. Agarwal R, Kaye SB. Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer. 2003;3(7):502–16. doi:10.1038/nrc1123.

    Article  CAS  PubMed  Google Scholar 

  33. Swanton C, Nicke B, Schuett M, Eklund AC, Ng C, Li Q, et al. Chromosomal instability determines taxane response. Proc Natl Acad Sci USA. 2009;106(21):8671–6. doi:10.1073/pnas.0811835106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bateman NW, Jaworski E, Ao W, Wang G, Litzi T, Dubil E, et al. Elevated AKAP12 in paclitaxel-resistant serous ovarian cancer cells is prognostic and predictive of poor survival in patients. J Proteome Res. 2015;14(4):1900–10. doi:10.1021/pr5012894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chappell NP, Teng PN, Hood BL, Wang G, Darcy KM, Hamilton CA, et al. Mitochondrial proteomic analysis of cisplatin resistance in ovarian cancer. J Proteome Res. 2012;11(9):4605–14. doi:10.1021/pr300403d.

    Article  CAS  PubMed  Google Scholar 

  36. Phippen NT, Bateman NW, Wang G, Conrads KA, Litzi TA, Oliver J, Maxwell GL, Hamilton CA, Darcy KM, Caronds T. NUAK1 (ARK5) is associated with poor prognosis in ovarian cancer. Front Oncol. 2016;6:213. doi:10.3389/fronc.2016.00213.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221(1):49–56. doi:10.1002/path.2696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simpson MA, Bradley WD, Harburger D, Parsons M, Calderwood DA, Koleske AJ. Direct interactions with the integrin beta1 cytoplasmic tail activate the Abl2/Arg kinase. J Biol Chem. 2015;290(13):8360–72. doi:10.1074/jbc.M115.638874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qiang XF, Zhang ZW, Liu Q, Sun N, Pan LL, Shen J, et al. miR-20a promotes prostate cancer invasion and migration through targeting ABL2. J Cell Biochem. 2014;115(7):1269–76. doi:10.1002/jcb.24778.

    Article  CAS  PubMed  Google Scholar 

  40. Kanchi KL, Johnson KJ, Lu C, McLellan MD, Leiserson MD, Wendl MC, et al. Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun. 2014;5:3156. doi:10.1038/ncomms4156.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Konecny GE, Wang C, Hamidi H, Winterhoff B, Kalli KR, Dering J, et al. Prognostic and therapeutic relevance of molecular subtypes in high-grade serous ovarian cancer. J Natl Cancer Inst. 2014;106:10. doi:10.1093/jnci/dju249.

    Article  Google Scholar 

  42. Parri M, Chiarugi P. Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal. 2010;8:23. doi:10.1186/1478-811X-8-23.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hyun SY, Hwang HI, Jang YJ. Polo-like kinase-1 in DNA damage response. BMB Rep. 2014;47(5):249–55.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (Review). Oncol Lett. 2012;4(6):1151–7. doi:10.3892/ol.2012.928.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu QF, Liu Y, Fan Y, Hua SN, Qu HY, Dong SW, et al. Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway. J Hematol Oncol. 2015;8:22. doi:10.1186/s13045-015-0117-5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhao M, Fang W, Wang Y, Guo S, Shu L, Wang L, et al. Enolase-1 is a therapeutic target in endometrial carcinoma. Oncotarget. 2015;6(17):15610–27. doi:10.18632/oncotarget.3639.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Principe M, Ceruti P, Shih NY, Chattaragada MS, Rolla S, Conti L, et al. Targeting of surface alpha-enolase inhibits the invasiveness of pancreatic cancer cells. Oncotarget. 2015;6(13):11098–113. doi:10.18632/oncotarget.3572.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu CY, Lin HH, Tang MJ, Wang YK. Vimentin contributes to epithelial–mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget. 2015;6(18):15966–83. doi:10.18632/oncotarget.3862.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Han F, Zhang L, Zhou Y, Yi X. Caveolin-1 regulates cell apoptosis and invasion ability in paclitaxel-induced multidrug-resistant A549 lung cancer cells. Int J Clin Exp Pathol. 2015;8(8):8937–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Vendetti FP, Lau A, Schamus S, Conrads TP, O’Connor MJ, Bakkenist CJ. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget. 2015;6(42):44289–305. doi:10.18632/oncotarget.6247.

    PubMed  PubMed Central  Google Scholar 

  51. Steiner E, Holzmann K, Elbling L, Micksche M, Berger W. Cellular functions of vaults and their involvement in multidrug resistance. Curr Drug Targets. 2006;7(8):923–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Uniformed Services University of the Health Sciences under Award Number HU0001-16-2-0006. We would like to acknowledge Kevin D. Stroop for his assistance in sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Conrads.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1. Mutation profile of WHIRC01

Supplementary Table 2. WHIRC01 transcriptome

Supplementary Table 3. Morphological subtype gene list

Supplementary Table 4. TCGA ovarian cancer tumor cohort

Supplementary Table 5. Molecular subtype gene list

Supplementary Table 6. WHIRC01 and OV90 proteome

Supplementary Fig. 1 Confirmation of human origin of WHIRC01 cell line by CO1 PCR Assay. WHIRC01 was verified to be human by the presence of the human CO1 (391 bp) band and the absence of mouse CO1 (150 bp) band in the CO1 PCR assay.

Supplementary Fig. 2 WHIRC01 growth curve and cell doubling time. Average live cells counts were used to generate the growth curve of WHIRC01. The slope of the exponential portion (day 3 – 7) of the growth curve was used to calculate the cell doubling time of WHIRC01 to be approximately 30 h.

Supplementary Fig. 3 Inhibition of ATR sensitized WHIRC01 to Carboplatin. Dose response of WHIRC01 to carboplatin (72 h treatment) in the presence or absence of ATR inhibitor (AZD6738, 1 µM) was measured by the MTS assay. AZD6738 sensitized WHIRC01 to carboplatin.

Supplementary material 1 (XLSX 769 kb)

Supplementary material 2 (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, PN., Bateman, N.W., Wang, G. et al. Establishment and characterization of a platinum- and paclitaxel-resistant high grade serous ovarian carcinoma cell line. Human Cell 30, 226–236 (2017). https://doi.org/10.1007/s13577-017-0162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-017-0162-1

Keywords

Navigation