Skip to main content
Log in

Enhanced sensitivity to sorafenib by inhibition of Akt1 expression in human renal cell carcinoma ACHN cells both in vitro and in vivo

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

To investigate whether antitumor activity of sorafenib, a potential molecular-targeted agent against RCC is enhanced by silencing Akt1 in a human RCC ACHN model. We established ACHN in which the expression vector containing short hairpin RNA targeting Akt1 was introduced (ACHN/sh-Akt1). Changes in several phenotypes of ACHN/sh-Akt1 following treatment with sorafenib were compared with those of ACHN transfected with control vector alone (ACHN/C) both in vitro and in vivo. When cultured in the standard medium, there was no significant difference in the in vitro growth pattern between ACHN/sh-Akt1 and ACHN/C; however, compared with ACHN/C, ACHN/sh-Akt1 showed a significantly higher sensitivity to sorafenib. Furthermore, treatment with Akt1 inhibitor, A-674563 also resulted in the significantly enhanced sensitivity of parental ACHN to sorafenib. Treatment of ACHN/sh-Akt1 with sorafenib, but not that of ACHN/C, induced marked downregulation of antiapoptotic proteins, including Bcl-2, Bcl-xL, and c-Myc. In vivo administration of sorafenib resulted in the significant growth inhibition of ACHN/sh-Akt1 tumor compared with that of ACHN/C tumor, and despite the lack of Ki-67 labeling index between ACHN/sh-Akt1 and ACHN/C tumors, apoptotic index in ACHN/sh-Akt1 tumor in mice treated with sorafenib was significantly greater than that in ACHN/C tumor. These findings suggest that combined treatment with Akt1 inhibitor and sorafenib could be a promising therapeutic approach for patients with advanced RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rini BI, Rathmell WK, Godley P. Renal cell carcinoma. Curr Opin Oncol. 2008;20:300–16.

    Article  PubMed  Google Scholar 

  2. Motzer RJ, Bacik J, Schwartz LH, et al. Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J Clin Oncol. 2004;22:454–63.

    Article  PubMed  Google Scholar 

  3. Herrmann E, Bierer S, Wülfing C. Update on systemic therapies of metastatic renal cell carcinoma. World J Urol. 2010;28:303–9.

    Article  CAS  PubMed  Google Scholar 

  4. Motzer RJ, Bacik J, Mazumdar M, et al. Interferon-α as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol. 2002;20:289–96.

    Article  CAS  PubMed  Google Scholar 

  5. Ratain MJ, Eisen T, O’Dwyer PJ, et al. Phase II placebo-controlled randomized discontinuationtrial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:2505–12.

    Article  CAS  PubMed  Google Scholar 

  6. Carlo-Stella C, Locatelli SL, Gianni AM, et al. Sorafenib inhibits lymphoma xenografts by targeting MAPK/ERK and AKT pathways in tumor and vascular cells. PLoS One. 2013;8:e61603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cheung M, Testa JR. Diverse mechanisms of AKT pathway activation in human malignancy. Curr Cancer Drug Targets. 2013;13:234–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Zinda MJ, Johnson MA, Graff JR, et al. AKT-1, -2, and -3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon. Clin Cancer Res. 2001;7:2475–9.

    CAS  PubMed  Google Scholar 

  9. Carpten JD, Faber AL, Thomas JE, et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature. 2007;448:439–44.

    Article  CAS  PubMed  Google Scholar 

  10. Shtilbans V, Wu M, Burstein DE. Current overview of the role of Akt in cancer studies via applied immunohistochemistry. Ann Diagn Pathol. 2008;12:153–60.

    Article  PubMed  Google Scholar 

  11. Horiguchi A, Oya M, Murai M, et al. Elevated Akt activation and its impact on clinicopathological features of renal cell carcinoma. J Urol. 2003;169:710–3.

    Article  CAS  PubMed  Google Scholar 

  12. Sakai I, Miyake H, Fujisawa M. Acquired resistance to sunitinib in human renal cell carcinoma cells is mediated by constitutive activation of signal transduction pathways associated with tumor cell proliferation. BJU Int. 2013;112:211–20.

    Article  Google Scholar 

  13. Serova M, de Gramont A, Raymond E, et al. Benchmarking effects of mTOR, PI3K, and dual PI3K/mTOR inhibitors in hepatocellular and renal cell carcinoma models developing resistance to sunitinib and sorafenib. Cancer Chemother Pharmacol. 2013;71:1297–307.

    Article  CAS  PubMed  Google Scholar 

  14. Chen KF, Chen HL, Cheng AL, et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther. 2011;337:155–61.

    Article  CAS  PubMed  Google Scholar 

  15. Miyake H, Nelson C, Gleave ME, et al. Overexpression of insulin-like growth factor binding protein-5 helps accelerate progression to androgenindependence in the human prostate LNCaP tumor model through activation of phosphatidylinositol 3′-kinase pathway. Endocrinology. 2000;141:2257–65.

    CAS  PubMed  Google Scholar 

  16. Kumano M, Miyake H, Fujisawa M, et al. Enhanced progression of human prostate cancer PC3 cells induced by the microenvironment of the seminal vesicle. Br J Cancer. 2008;98:356–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Harada K, Miyake H, Fujisawa M, et al. Acquired resistance to temsirolimus in human renal cell carcinoma cells is mediated by the constitutive activation of signal transduction pathways through mTORC2. Br J Cancer. 2013;109:2389–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kususda Y, Miyake H, Fujisawa M, et al. Clusterin inhibition using OGX-011 synergistically enhances antitumour activity of sorafenib in a human renal cell carcinoma model. Br J Cancer. 2012;106:1945–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Coppin C, Kollmannsberger C, Wilt TJ, et al. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int. 2011;108:1556–63.

    Article  CAS  PubMed  Google Scholar 

  20. Escudier B, Albiges L, Sonpavde G. Optimal management of metastatic renal cell carcinoma: current status. Drugs. 2013;73:427–38.

    Article  CAS  PubMed  Google Scholar 

  21. Philips GK, Atkins MB. New agents and new targets for renal cell carcinoma. Am Soc Clin Oncol Educ Book. 2014; e222–7.

  22. Ratain MJ, Eisen T, O’Dwyer PJ, et al. Phase II placebo-controlled randomized discontinuationtrial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2006;24:2505–12.

    Article  CAS  PubMed  Google Scholar 

  23. Wan J, Liu T, Li W, et al. Synergistic antitumour activity of sorafenib in combination with tetrandrine is mediated by reactive oxygen species (ROS)/Akt signaling. Br J Cancer. 2013;109:342–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Karashima T, Komatsu T, Shuin T, et al. Novel combination therapy with imiquimod and sorafenib for renal cell carcinoma. Int J Urol. 2014;21:702–6.

    Article  CAS  PubMed  Google Scholar 

  25. Yoon H, Kim DJ, Lee YB, et al. Antitumor activity of a novel antisense oligonucleotide against Akt1. J Cell Biochem. 2009;108:832–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Liu X, Shi Y, Ng SC, et al. Downregulation of Akt1 inhibits anchorage-independent cell growth and induces apoptosis in cancer cells. Neoplasia. 2001;3:278–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Engelman JA, Chen L, Upadhyay R, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14:1351–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chandarlapaty S, Sawai A, Serra V, et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell. 2011;19:58–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Yanagihara M, Katano M, Andoh T, et al. Ribozymes targeting serine/threonine kinase Akt1 sensitize cells to anticancer drugs. Cancer Sci. 2005;96:620–6.

    Article  CAS  PubMed  Google Scholar 

  30. Chen WS, Xu PZ, Hay N, et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 2001;15:2203–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Merhi F, Tang R, Bauvois B, et al. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells. PLoS One. 2011;6:e25963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yang L, Xiao L, Cao Y, et al. Effect of DNAzymes targeting Akt1 on cell proliferation and apoptosis in nasopharyngeal carcinoma. Cancer Biol Ther. 2009;8:366–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Miyake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tei, H., Miyake, H. & Fujisawa, M. Enhanced sensitivity to sorafenib by inhibition of Akt1 expression in human renal cell carcinoma ACHN cells both in vitro and in vivo. Human Cell 28, 114–121 (2015). https://doi.org/10.1007/s13577-015-0112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-015-0112-8

Keywords

Navigation