Skip to main content

Advertisement

Log in

miR-137 impairs the proliferative and migratory capacity of human non-small cell lung cancer cells by targeting paxillin

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Human lung cancer is the leading cause of cancer motility worldwide, with nearly 1.4 million deaths each year, among which non-small cell lung cancer (NSCLC) accounts for almost 85 % of this disease. The discovery of microRNAs (miRNAs) provides a new avenue for NSCLC diagnostic and treatment regiments. Currently, a large number of miRNAs have been reported to be associated with the progression of NSCLC, among which serum miR-137 has been examined to be down-regulated in NSCLC patients. However, the function of miR-137 on NSCLC cells migration and invasion and the relative mechanisms were less known. Here, we found that ectopic expression of miR-137 could inhibit cell proliferation, induce cell apoptosis, and suppress cell migration and invasion in NSCLC cell line A549. Moreover, we found that paxillin (PXN) was a target gene of miR-137 in NSCLC cells and restored expression of PXN abolished the miR-137-mediated suppression of cell migration and invasion. Taken together, our results showed that miR-137 acted as a tumor suppressor in NSCLC by targeting PXN, and it may provide novel diagnostic and therapeutic options for human NSCLC clinical operation in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Center MM, DeSantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19:1893–907.

    Article  PubMed  Google Scholar 

  2. Strauss GM. Adjuvant chemotherapy of lung cancer: methodologic issues and therapeutic advances. Hematol Oncol Clin North Am. 2005;19:263–81.

    Article  PubMed  Google Scholar 

  3. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol. 2012;13:e249–58.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  5. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8:93–103.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang WC, Liu J, Xu X, Wang G. The role of microRNAs in lung cancer progression. Med Oncol. 2013;30:675.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao B, Han H, Chen J, et al: MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer Lett 2013.

  8. Arora S, Ranade AR, Tran NL, et al. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer. 2011;129:2621–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Gong M, Ma J, Guillemette R, et al: miR-335 inhibits small cell lung cancer bone metastases via IGF-1R and RANKL pathways. Mol Cancer Res 2013.

  10. Zhao Y, Li Y, Lou G, et al. MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PLoS ONE. 2012;7:e39102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Liu M, Lang N, Qiu M, et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. Int J Cancer. 2011;128:1269–79.

    Article  CAS  PubMed  Google Scholar 

  12. Dacic S, Kelly L, Shuai Y, Nikiforova MN. miRNA expression profiling of lung adenocarcinomas: correlation with mutational status. Mod Pathol. 2010;23:1577–82.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu X, Li Y, Shen H, et al. miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS Lett. 2013;587:73–81.

    Article  CAS  PubMed  Google Scholar 

  14. Chen DL, Wang DS, Wu WJ, et al. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis. 2013;34:803–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Leonardo TR, Schultheisz HL, Loring JF, Laurent LC. The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol. 2012;14:1114–21.

    Article  CAS  PubMed  Google Scholar 

  16. Rani S, Gately K, Crown J, O’Byrne K and O’Driscoll L: Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biol Ther 14: 2013.

  17. Maftouh M, Avan A, Galvani E, Peters GJ, Giovannetti E. Molecular mechanisms underlying the role of microRNAs in resistance to epidermal growth factor receptor-targeted agents and novel therapeutic strategies for treatment of non-small-cell lung cancer. Crit Rev Oncog. 2013;18:317–26.

    Article  PubMed  Google Scholar 

  18. Zandberga E, Kozirovskis V, Abols A, Andrejeva D, Purkalne G, Line A. Cell-free microRNAs as diagnostic, prognostic, and predictive biomarkers for lung cancer. Genes Chromosomes Cancer. 2013;52:356–69.

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Wang X, Wang H, et al. miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2. Eur J Cancer. 2012;48:3104–11.

    Article  CAS  PubMed  Google Scholar 

  20. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68:2094–105.

    Article  CAS  PubMed  Google Scholar 

  21. Wu DW, Cheng YW, Wang J, Chen CY, Lee H. Paxillin predicts survival and relapse in non-small cell lung cancer by microRNA-218 targeting. Cancer Res. 2010;70:10392–401.

    Article  CAS  PubMed  Google Scholar 

  22. Jagadeeswaran R, Surawska H, Krishnaswamy S, et al. Paxillin is a target for somatic mutations in lung cancer: implications for cell growth and invasion. Cancer Res. 2008;68:132–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Schaller MD. Paxillin: a focal adhesion-associated adaptor protein. Oncogene. 2001;20:6459–72.

    Article  CAS  PubMed  Google Scholar 

  24. Turner CE. Paxillin and focal adhesion signalling. Nat Cell Biol. 2000;2:E231–6.

    Article  CAS  PubMed  Google Scholar 

  25. Brown MC, Turner CE. Paxillin: adapting to change. Physiol Rev. 2004;84:1315–39.

    Article  CAS  PubMed  Google Scholar 

  26. Kawada I, Hasina R, Lennon FE, et al. Paxillin mutations affect focal adhesions and lead to altered mitochondrial dynamics: relevance to lung cancer. Cancer Biol Ther. 2013;14:679–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Chen J, Gallo KA. MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res. 2012;72:4130–40.

    Article  CAS  PubMed  Google Scholar 

  28. Deakin NO, Turner CE. Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis. Mol Biol Cell. 2011;22:327–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Downey C, Craig DH, Basson MD. Pressure activates colon cancer cell adhesion via paxillin phosphorylation, Crk, Cas, and Rac1. Cell Mol Life Sci. 2008;65:1446–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Jun Q, Zhiwei W, Lilin M, Jing K, Qichao N. Effects of paxillin on HCT-8 human colorectal cancer cells. Hepatogastroenterology. 2011;58:1951–5.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Affiliated Hospital of Binzhou Medical University.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaozhi Wang.

Additional information

Y. Bi and Y. Han contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, Y., Han, Y., Bi, H. et al. miR-137 impairs the proliferative and migratory capacity of human non-small cell lung cancer cells by targeting paxillin . Human Cell 27, 95–102 (2014). https://doi.org/10.1007/s13577-013-0085-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-013-0085-4

Keywords

Navigation