Skip to main content
Log in

The use of modern imaging technologies in radiation therapy of cervical cancer

  • Review
  • Published:
Journal of Radiation Oncology

Abstract

Over the past century, definitive management of unresectable cervical cancer has evolved and currently employs high-dose radiation treatment with teletherapy and intracavitary brachytherapy (ICBT) components, combined with concurrent chemotherapy. Reflecting high disease prevalence among developing nations, the International Federation of Gynecology and Obstetrics (FIGO) staging of cervical cancer relies on clinical assessment, with limited radiographic studies. However, multiple clinicopathologic analyses describe suboptimal correlation between clinical examination findings and pathologic stage. Over the past two decades, systematic evaluation of volumetric and functional imaging modalities including CT, MRI, and PET-CT has refined our ability to define disease extent and provide posttreatment surveillance. Similarly, traditional ICBT techniques relied on two-dimensional (2D) data for evaluation of target dose coverage and offered limited assessment of exposure to critical structures including the bladder, rectum, and sigmoid colon. During the last several years, investigators at leading European centers have enhanced the capabilities of existing ICBT techniques through dose optimization [high-dose rate (HDR) and pulsed dose rate (PDR)] and by incorporating volumetric imaging methods. Early results are encouraging, from both toxicity and tumor control perspectives. These techniques are currently being adopted in multiple centers. Pertinent aspects are summarized in the body of this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J et al (2010) Cancer statistics. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  3. Tod MC, Meredith WJ (1938) A dosage system for use in the treatment of cancer of the uterine cervix. Br J Radiol 11:809–824

    Article  Google Scholar 

  4. National Institute of Health (1999) NCI issues clinical announcement on cervical cancer: chemotherapy plus radiation improves survival. http://www.nih.gov/news/pr/feb99/nci22.html

  5. Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration (CCCMAC) (2010) Reducing uncertainties about the effects of chemoradiotherapy for cervical cancer: individual patient data meta-analysis. Cochrane Database Syst Rev. doi:10.1002/14651858.CD008285

    Google Scholar 

  6. Balleyguier C, Sala E, Da Cunha T et al (2011) Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol 21(5):1102–1110

    Article  PubMed  Google Scholar 

  7. Duenas-Gonzalez A, Zarba JJ, Patel F et al (2011) Phase III, open-label, randomized study comparing concurrent gemcitabine plus cisplatin and radiation followed by adjuvant gemcitabine and cisplatin versus concurrent cisplatin and radiation in patients with stage IIB to IVA carcinoma of the cervix. J Clin Oncol 29(13):1678–1685

    Article  CAS  PubMed  Google Scholar 

  8. ClinicalTrials.gov (2012) Cisplatin and radiation therapy with or without carboplatin and paclitaxel in patients with locally advanced cervical cancer. [cited 2013; A phase III trial of adjuvant chemotherapy following chemoradiation as primary treatment for locally advanced cervical cancer compared to chemoradiation alone: the OUTBACK trial]. http://clinicaltrials.gov/show/NCT01414608

  9. Logsdon MD, Eifel PJ (1999) FIGO IIIB squamous cell carcinoma of the cervix: an analysis of prognostic factors emphasizing the balance between external beam and intracavitary radiation therapy. Int J Radiat Oncol Biol Phys 43(4):763–775

    Article  CAS  PubMed  Google Scholar 

  10. Gunderson LL, Tepper JE (2012) Clinical radiation cncology, 3rd edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  11. Walsh JW, Goplerud DR (1981) Prospective comparison between clinical and CT staging in primary cervical carcinoma. Am J Roentgenol 137(5):997–1003

    Article  CAS  Google Scholar 

  12. Hricak H, Lacoy CG, Sandles LG et al (1988) Invasive cervical carcinoma: comparison of MR imaging and surgical findings. Radiology 166(3):623–631

    Article  CAS  PubMed  Google Scholar 

  13. Greco A, Mason P, Leung AW et al (1989) Staging of carcinoma of the uterine cervix: MRI-surgical correlation. Clin Radiol 40(4):401–405

    Article  CAS  PubMed  Google Scholar 

  14. Togashi K, Nishimura K, Sagoh T et al (1989) Carcinoma of the cervix: staging with MR imaging. Radiology 171(1):245–251

    Article  CAS  PubMed  Google Scholar 

  15. Koyama T, Tamai K, Togashi K (2007) Staging of carcinoma of the uterine cervix and endometrium. Eur Radiol 17(8):2009–2019

    Article  PubMed  Google Scholar 

  16. Flueckiger F, Ebner F, Poschauko H et al (1992) Cervical cancer: serial MR imaging before and after primary radiation therapy—a 2-year follow-up study. Radiology 184(1):89–93

    Article  CAS  PubMed  Google Scholar 

  17. Hatano K, Sekiya Y, Araki H et al (1999) Evaluation of the therapeutic effect of radiotherapy on cervical cancer using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 45(3):639–644

    Article  CAS  PubMed  Google Scholar 

  18. Hricak H, Gatsonis C, Chi DS et al (2005) Role of imaging in pretreatment evaluation of early invasive cervical cancer: results of the intergroup study American College of Radiology Imaging Network 6651-Gynecologic Oncology Group 183. J Clin Oncol 23(36):9329–9337

    Article  PubMed  Google Scholar 

  19. Pecorelli S, Zigliani L, Odicino F (2009) Revised FIGO staging for carcinoma of the cervix. Int J Gynaecol Obstet 105(2):107–108

    Article  PubMed  Google Scholar 

  20. Patel CN, Nazir SA, Khan Z et al (2011) 18F-FDG PET/CT of cervical carcinoma. Am J Roentgenol 196(5):1225–1233

    Article  Google Scholar 

  21. Grigsby PW, Dehdashti F, Siegel BA (1999) FDG-PET evaluation of carcinoma of the cervix. Clin Positron Imaging 2(2):105–109

    Article  PubMed  Google Scholar 

  22. Grigsby PW, Siegel BA, Dehdashti F (2001) Lymph node staging by positron emission tomography in patients with carcinoma of the cervix. J Clin Oncol 19(17):3745–3749

    CAS  PubMed  Google Scholar 

  23. Tran BN, Grigsby PW, Dehdashti F et al (2003) Occult supraclavicular lymph node metastasis identified by FDG-PET in patients with carcinoma of the uterine cervix. Gynecol Oncol 90(3):572–576

    Article  PubMed  Google Scholar 

  24. Hope AJ, Saha P, Grigsby PW (2006) FDG-PET in carcinoma of the uterine cervix with endometrial extension. Cancer 106(1):196–200

    Article  PubMed  Google Scholar 

  25. Grigsby PW, Siegel BA, Dehdashti F et al (2004) Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol 22(11):2167–2171

    Article  PubMed  Google Scholar 

  26. Schwarz JK, Siegel BA, Dehdashti F et al (2007) Association of posttherapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA 298(19):2289–2295

    Article  CAS  PubMed  Google Scholar 

  27. Sakurai H, Suzuki Y, Nonaka T et al (2006) FDG-PET in the detection of recurrence of uterine cervical carcinoma following radiation therapy—tumor volume and FDG uptake value. Gynecol Oncol 100(3):601–607

    Article  PubMed  Google Scholar 

  28. Uzan C, Souadka A, Gouy S et al (2011) Analysis of morbidity and clinical implications of laparoscopic para-aortic lymphadenectomy in a continuous series of 98 patients with advanced-stage cervical cancer and negative PET-CT imaging in the para-aortic area. Oncologist 16(7):1021–1027

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lee LJ, Das IJ, Higgins SA et al (2012) American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part III: low-dose-rate and pulsed-dose-rate brachytherapy. Brachytherapy 11(1):53–57

    Article  PubMed  Google Scholar 

  30. Sarkaria JN, Petereit DG, Stitt JA et al (1994) A comparison of the efficacy and complication rates of low dose-rate versus high dose-rate brachytherapy in the treatment of uterine cervical carcinoma. Int J Radiat Oncol Biol Phys 30(1):75–82, discussion 247

    Article  CAS  PubMed  Google Scholar 

  31. Fowler JF (1989) The linear-quadratic formula and progress in fractionated radiotherapy. Br J Radiol 62:679–694

    Article  CAS  PubMed  Google Scholar 

  32. Chatani M, Matayoshi Y, Masaki N et al (1994) A prospective randomized study concerning the point A dose in high-dose rate intracavitary therapy for carcinoma of the uterine cervix. The final results. Strahlenther Onkol 170(11):636–642

    CAS  PubMed  Google Scholar 

  33. Teshima T, Inoue T, Ikeda H et al (1993) High-dose rate and low-dose rate intracavitary therapy for carcinoma of the uterine cervix. Final results of Osaka University Hospital. Cancer 72(8):2409–2414

    Article  CAS  PubMed  Google Scholar 

  34. Hareyama M, Sakata K, Oouchi A et al (2002) High-dose-rate versus low-dose-rate intracavitary therapy for carcinoma of the uterine cervix: a randomized trial. Cancer 94(1):117–124

    Article  PubMed  Google Scholar 

  35. Lertsanguansinchai P, Lertbutsayanukul C, Shotelersuk K et al (2004) Phase III randomized trial comparing LDR and HDR brachytherapy in treatment of cervical carcinoma. Int J Radiat Oncol Biol Phys 59(5):1424–1431

    Article  PubMed  Google Scholar 

  36. Wang X, Liu R, Ma B et al (2010) High dose rate versus low dose rate intracavity brachytherapy for locally advanced uterine cervix cancer. Cochrane Database Syst Rev. doi:10.1002/14651858.CD007563.pub2

    Google Scholar 

  37. Potter R, Knocke TH, Fellner C et al (2000) Definitive radiotherapy based on HDR brachytherapy with iridium 192 in uterine cervix carcinoma: report on the Vienna University Hospital findings (1993-1997) compared to the preceding period in the context of ICRU 38 recommendations. Cancer Radiother 4(2):159–172

    Article  CAS  PubMed  Google Scholar 

  38. Muschitz S, Petrow P, Briot E et al (2004) Correlation between the treated volume, the GTV and the CTV at the time of brachytherapy and the histopathologic findings in 33 patients with operable cervix carcinoma. Radiother Oncol 73(2):187–194

    Article  CAS  PubMed  Google Scholar 

  39. Haie-Meder C, Potter R, van Limbergen E et al (2005) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 74(3):235–245

    Article  PubMed  Google Scholar 

  40. Potter R, Haie-Meder C, van Limbergen E et al (2006) Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 78(1):67–77

    Article  PubMed  Google Scholar 

  41. Lang S, Nulens A, Briot E et al (2006) Intercomparison of treatment concepts for MR image assisted brachytherapy of cervical carcinoma based on GYN GEC-ESTRO recommendations. Radiother Oncol 78(2):185–193

    Article  PubMed  Google Scholar 

  42. Dimopoulos JC, Schirl G, Baldinger A et al (2009) MRI assessment of cervical cancer for adaptive radiotherapy. Strahlenther Onkol 185(5):282–287

    Article  PubMed  Google Scholar 

  43. Kirisits C, Lang S, Dimopoulos J et al (2006) Uncertainties when using only one MRI-based treatment plan for subsequent high-dose-rate tandem and ring applications in brachytherapy of cervix cancer. Radiother Oncol 81(3):269–275

    Article  PubMed  Google Scholar 

  44. Viswanathan AN, Dimopoulos J, Kirisits C et al (2007) Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys 68(2):491–498

    Article  PubMed  Google Scholar 

  45. Nesvacil N, Potter R, Sturdza A et al (2012) Adaptive image guided brachytherapy for cervical cancer: a combined MRI-/CT-planning technique with MRI only at first fraction. Radiother Oncol 107:75–81

    Article  PubMed  Google Scholar 

  46. Katz A, Eifel PJ (2000) Quantification of intracavitary brachytherapy parameters and correlation with outcome in patients with carcinoma of the cervix. Int J Radiat Oncol Biol Phys 48(5):1417–1425

    Article  CAS  PubMed  Google Scholar 

  47. Clark BG, Souhami L, Roman TN et al (1997) The prediction of late rectal complications in patients treated with high dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 38(5):989–993

    Article  CAS  PubMed  Google Scholar 

  48. Chen SW, Liana JA, Yang SN et al (2000) The prediction of late rectal complications following the treatment of uterine cervical cancer by high-dose-rate brachytherapy. Int J Radiat Oncol Biol Phys 47(4):955–961

    Article  CAS  PubMed  Google Scholar 

  49. Chen SW, Liang JA, Hung YC et al (2009) Geometrical sparing factors for the rectum and bladder in the prediction of grade 2 and higher complications after high-dose-rate brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys 75(5):1335–1343

    Article  PubMed  Google Scholar 

  50. Nag S, Chao SC, Erickson B et al (2002) The American Brachytherapy Society recommendations for low-dose-rate brachytherapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys 52(1):33–48

    Article  PubMed  Google Scholar 

  51. Wachter-Gerstner N, Wachter S, Reinstadler E et al (2003) Bladder and rectum dose defined from MRI based treatment planning for cervix cancer brachytherapy: comparison of dose-volume histograms for organ contours and organ wall, comparison with ICRU rectum and bladder reference point. Radiother Oncol 68(3):269–276

    Article  PubMed  Google Scholar 

  52. Georg P, Potter R, Georg D et al (2012) Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy. Int J Radiat Oncol Biol Phys 82(2):653–657

    Article  PubMed  Google Scholar 

  53. Georg P, Lang S, Dimopoulos JC et al (2011) Dose-volume histogram parameters and late side effects in magnetic resonance image-guided adaptive cervical cancer brachytherapy. Int J Radiat Oncol Biol Phys 79(2):356–362

    Article  PubMed  Google Scholar 

  54. Potter R, Dimopoulos J, Georg P et al (2007) Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 83(2):148–155

    Article  PubMed  Google Scholar 

  55. Lindegaard JC, Tanderup K, Nielsen SK et al (2008) MRI-guided 3D optimization significantly improves DVH parameters of pulsed-dose-rate brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys 71(3):756–764

    Article  PubMed  Google Scholar 

  56. Narayan K, van Dyk S, Bernshaw D et al (2009) Comparative study of LDR (Manchester system) and HDR image-guided conformal brachytherapy of cervical cancer: patterns of failure, late complications, and survival. Int J Radiat Oncol Biol Phys 74(5):1529–1535

    Article  PubMed  Google Scholar 

  57. Jrgenliemk-Schulz IM, Lang S, Tanderup K et al (2010) Variation of treatment planning parameters (D90 HR-CTV, D 2cc for OAR) for cervical cancer tandem ring brachytherapy in a multicentre setting: comparison of standard planning and 3D image guided optimisation based on a joint protocol for dose-volume constraints. Radiother Oncol 94(3):339–345

    Article  Google Scholar 

  58. Nomden C, de Leeuw AA, van Limbergen E et al (2012) Multicentre treatment planning study of MRI-guided brachytherapy for cervical cancer: comparison between tandem-ovoid applicator users. Radiother Oncol 107:82–87

    Article  PubMed  Google Scholar 

  59. Charra-Brunaud C, Harter V, Delannes M et al (2012) Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: results of the French STIC prospective study. Radiother Oncol 103(3):305–313

    Article  PubMed  Google Scholar 

  60. Simpson D, Vashar CM, Kannan N et al (2012) CT and MRI-based image guided brachytherapy for cervical cancer: a multi-institutional report. Int J Radiat Oncol Biol Phys 84(3):S19

    Article  Google Scholar 

  61. Dimopoulos JC, Potter R, Lang S et al (2009) Dose-effect relationship for local control of cervical cancer by magnetic resonance image-guided brachytherapy. Radiother Oncol 93(2):311–315

    Article  PubMed  Google Scholar 

  62. Potter R, Georg P, Dimopoulos JC et al (2011) Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother Oncol 100(1):116–123

    Article  PubMed Central  PubMed  Google Scholar 

  63. Schmid MP, Kirisits C, Nesvacil N et al (2011) Local recurrences in cervical cancer patients in the setting of image-guided brachytherapy: a comparison of spatial dose distribution within a matched-pair analysis. Radiother Oncol 100(3):468–472

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Laura Riojas for her help in preparation of this manuscript.

Conflict of interest

Angel I. Blanco, Larissa A. Meyer, Verghese George, Bin S. Teh, Adan Rios, Kara Ferachi, Matthew Rodriguez, Anneliese Gonzalez, and John Dalrymple declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel I. Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, A.I., Meyer, L.A., George, V. et al. The use of modern imaging technologies in radiation therapy of cervical cancer. J Radiat Oncol 4, 1–10 (2015). https://doi.org/10.1007/s13566-014-0178-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13566-014-0178-z

Keywords

Navigation