Skip to main content

Advertisement

Log in

Chalcone isomerase-like genes in Tradescantia BNL4430: identification, molecular characterization, and differential expression profiles under Ɣ-radiation stress

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chalcone isomerase (CHI) is an important catalytic enzyme that converts naringenin (chalcone) to (2S)-naringenin in phenylpropanoid pathway. Here, we performed the first comprehensive molecular genetic study on Chalcone isomerase genes in Tradescantia clone BNL 4430 (designated as TrCHI). We identified seven TrCHIs genes (five with full length and two with partial length) through in silico analysis using available transcriptomic resources. Phylogenetic analysis suggest that TrCHIs are closely related to rice CHI. TrCHIs fall into three different CHI subfamilies: (1) type I (TrCHI2 including TrCHI2a, 2b, 2c, and 2d), (2) type III (TrCHI3 including TrCHI3B and 3C), and (3) type IV (TrCHI4). These partial or full length TrCHI genes were 456–819 bp in length with molecular mass ranging from 23 kDa to 47 kDa. Type I (TrCHI2) subfamily has the conserved active substrate binding sites similar to previously reported CHIs. The predicted tertiary structures of TrCHI2b showed structural configurations consistent with AtCHIs, suggesting that type I (TrCHI2) subfamily members of CHI might have active roles in flavonoid production. Real-time quantitative polymerase chain reaction (qRT-PCR) revealed that TrCHIs were expressed in a tissue-specific manner. TrCHIs in flowers under Ɣ–radiation treatment were up-regulated, indicating their potential action against radiation stress. Their regulation might be correlated with the presence of a few cis elements in their promoters. Our results provided a basis for functional study of flower pigmentation and breeding for novel flower color. They will also help us to elucidate radiation signal transduction pathways in Tradescantia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhar FK, Bagheri AR, Moshtaghi N (2016) Analysis of chalcone synthase and chalcone isomerase gene expression in pigment production pathway at different flower colors of petunia hybrida. J Cell Mol Res 8:8–14. doi:10.22067/jcmr.v8i1.50406

    Google Scholar 

  • Ali MB, McNear DH Jr (2014) Induced transcriptional profiling of phenylpropanoid pathway genes increased flavonoid and lignin content in Arabidopsis leaves in response to microbial products. BMC Plant Biol 14:84

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE. Tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SM, Li CH, Zhu XR, Deng YM, Sun W, Wang LS, Chen FD, Zhang Z (2012) The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biol Plant 56:458–464

    Article  CAS  Google Scholar 

  • Chen M, Zhu WJ, You X, Liu YD, Kaleri GM, Yang Q (2015) Isolation and characterization of a chalcone isomerase gene promoter from potato cultivars. Genet Mol Res Dec 14:18872–18885

    Article  CAS  Google Scholar 

  • Cheng H, Li L, Cheng S, Cao F, Wang Y, Yuan H (2011) Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep 30:49–62. doi:10.1007/s00299-010-0943-4

    Article  CAS  PubMed  Google Scholar 

  • Croxdale J (1998) Stomatal patterning in monocotyledons: tradescantia as a model system. J Exp Bot 49:279–292

    Article  Google Scholar 

  • Dangelmayr B, Stotz G, Spribille R, Forkmann G (1983) Relationship between flower development, anthocyanin accumulation and activity of enzymes involved in flavonoid biosynthesis in Matthiola incana R. Br. Z Naturforsch 38c:551–555

    CAS  Google Scholar 

  • Dastmalchi M, Dhaubhadel S (2015) Soybean chalcone isomerase: evolution of the fold, and the differential expression and localization of the gene family. Planta 241:507–523

    Article  CAS  PubMed  Google Scholar 

  • Druka A, Kudrna D, Rostoks N, Brueggeman R, Von Wettstein D, Kleinhofs A (2003) Chalcone isomerase from rice (Oryza sativa) and barley (Hordeum vulgare): physical, genetic and mutation mapping. Gene 302:171–178. doi:10.1016/S0378-1119(02)01105-8

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Emiliani J, Grotewold E, Falcone Ferreyra ML, Casati P (2013) Flavonols protect Arabidopsis plants against UV-B deleterious effects. Mol Plant 6:1376–1379

    Article  CAS  PubMed  Google Scholar 

  • Falcone FM, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152. doi:10.1199/tab.0152

    Article  PubMed  PubMed Central  Google Scholar 

  • Gensheimer M, Mushegian A (2004) Chalcone isomerase family and fold: no longer unique to plants. Protein Sci 13:540–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham TL (1998) Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiol Biochem 36:135–144

    Article  CAS  Google Scholar 

  • Grotewold E, Peterson T (1994) Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Mol Gen Genet 242:1–8. doi:10.1007/BF00277341

    CAS  PubMed  Google Scholar 

  • Guo J, Zhou W, Lu Z, Li H, Li H, Gao F (2015) Isolation and functional analysis of chalcone isomerase gene from purple- fleshed sweet potato. Plant Mol Biol Rep 33:1451–1463

    Article  CAS  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions. J Exp Bot 63:3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Hertog MJL, Feskens EJ, Kromhout D (1997) Antioxidant flavonols and coronary heart disease risk. Lancet 349:699

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa S, Wushur S (2000) Analyses of spontaneous pink mutant events in the stamen hairs of Tradescantia clone BNL 4430 cultivated in a nutrient solution circulating growth chamber. Mutat Res 472:37–49

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Noel JP (2002) Reaction mechanism of chalcone isomerase: pH dependence, diffusion control, and product binding differences. J Biol Chem 277:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Bowman ME, Dixon RA, Noel JP (2000) Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat Struct Mol Biol 7:786–791

    Article  CAS  Google Scholar 

  • Jez JM, Bowman ME, Noel JP (2002) Role of hydrogen bonds in the reaction mechanism of chalcone isomerase. Biochem 41:5168–5176

    Article  CAS  Google Scholar 

  • Jiang M, Liu Y, Ren L, Lian H, Chen H (2016) Molecular cloning and characterization of anthocyanin biosynthesis genes in eggplant (Solanum melongena L.). Acta Physiol Plant 38:163

    Article  Google Scholar 

  • Knekt P, Jarvinen R, Seppanen P, Hellovaara M, Teppo L, Pukkala E, Aromaa A (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146:223–230

    Article  CAS  PubMed  Google Scholar 

  • Kovács E, Keresztes A (2002) Effect of gamma and UV-B/C radiation on plant cells. Micron 33:199–210

    Article  PubMed  Google Scholar 

  • Kumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:162750

    Google Scholar 

  • Kutchan TM (2005) A role for intra- and intercellular translocation in natural product biosynthesis. Curr Opin Plant Biol 8:292–300

    Article  CAS  PubMed  Google Scholar 

  • Lambais MR, Mehdy C (1993) Suppression of endoCHItinase, β-1,3-endoglucanase, and chalcone isomerase expression in bean vesicular-arbuscular mycorrhizal roots under different soil phosphate conditions. Mol Plant Microbe Interact 6:75–83

    Article  CAS  Google Scholar 

  • Lee GJ, Chung SJ, Park IS, Lee JS, Kim JB, Kim SB, Kang SY (2008) Variation in the phenotypic features and transcripts of color mutants of chrysanthemum (Dendranthema grandiflorum) derived from gamma ray mutagenesis. J Plant Biol 51:418–423

    Article  CAS  Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Zhao S, Wang J, Zhao C, Guan H, Hou L, Li C, Xia H, Wang X (2015) Molecular cloning, expression, and evolution analysis of type II CHI gene from peanut (AraCHIs hypogaea L.). Dev Genes Evol 225:1–10

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Pooler MR, Griesbach RJ (2009) Anthocyanin regulatory/structural gene expression in Phalaenopsis. J Am Soc Hortic Sci 134:88–96

    Google Scholar 

  • Moghaddam SS, Jaafar H, Ibrahim R, Rahmat A, Aziz MA, Philip E (2011) Effects of acute gamma irradiation on physiological traits and flavonoid accumulation of Centella asiatica. Molecules 16:4994–5007

    Article  CAS  PubMed  Google Scholar 

  • Mol J, Grotewold E, Koes R (1998) How genes paint flowers and seeds. Trends Plant Sci 3:212–217. doi:10.1016/S1360-1385(98)01242-4

    Article  Google Scholar 

  • Morita Y, Takagi K, Fukuchi-Mizutani M, Ishiguro K, Tanaka Y, Nitasaka E, Nakayama M, Saito N, Kagami T, Hoshino A, Iida S (2014) A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation. Plant J 78:294–304

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka T, Nishihara M, Mishiba K, Yamamura S (2005) Temporal expression of flavonoid biosynthesis-related genes regulates flower pigmentation in gentian plants. Plant Sci 168:1309–1318

    Article  CAS  Google Scholar 

  • Ngaki MN, Louie GV, Philippe RN, Manning G, Pojer F, Bowman ME, Li L, Larsen E, Wurtele ES, Noel JP (2012) Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis. Nature 485:530–533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihara M, Nakatsuka T, Yamamura S (2005) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett 579:6074–6078

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Choung MG, Kim JB, Hahn BS, Kim JB, Bae SC, Roh KH, Kim YH, Cheon CI, Sung MK, Cho KJ (2007) Genes up-regulated during red coloration in UV-B irradiated lettuce leaves. Plant Cell Rep 26:507–516

    Article  CAS  PubMed  Google Scholar 

  • Przysiecka Ł, Książkiewicz M, Wolko B, Naganowska B (2015) Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome. Front Plant Sci 6:268. doi:10.3389/fpls.2015.00268

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimada N, Aoki T, Sato S, Nakamura Y, Tabata S, Ayabe S (2003) A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legumespecific 5-deoxy (iso) flavonoids in Lotus japonicus. Plant Physiol 131:941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoeva OY, Khlestkina EK, Berges H, Salina EA (2014) The homoelogous genes encoding chalcone-flavanone isomerase in Triticum aestivum L.: structural characterization and expression in different parts of wheat plant. Gene 538:334–341

    Article  CAS  PubMed  Google Scholar 

  • Simmonds MS (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30

    Article  CAS  PubMed  Google Scholar 

  • Springob K, Nakajima J, Yamazaki M, Saito K (2003) Recent advances in the biosynthesis of anthocyanins. Nat Prod Rep 20:288–303. doi:10.1039/b109542k

    Article  CAS  PubMed  Google Scholar 

  • Sreevidya VS, Rao CS, Sullia SB, Ladha JK, Reddy PM (2006) Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 57:1957–1969

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tossi V, Amenta M, Lamattina L, Cassia R (2011) Nitric oxide enhances plant ultraviolet-B protection up-regulating gene expression of the phenylpropanoid biosynthetic pathway. Plant Cell Environ 34:909–924

    Article  CAS  PubMed  Google Scholar 

  • van Tunen AJ, Koes RE, Spelt CE, Van der Krol AR, Stuitje AR, Mol JN (1988) Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light-regulated and differential expression of flavonoid genes. EMBO J 7:1257–1263

    PubMed  PubMed Central  Google Scholar 

  • van Tunen AJ, Hartman SA, Mur IA, Mol JN (1989) Regulation of chalcone flavanone isomerase (CHI) gene expression in Petunia hybrida: the use of alternative promoters in corolla, anthers and pollen. Plant Mol Biol 12:539–551

    Article  PubMed  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X, Close TJ (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson AK (1981) Commelinaceae–a review of the distribution, biology and control of the important weeds belonging to this family. Trop Pest Manag 27:405–418

    Article  Google Scholar 

  • Winkel-Shirley B (2002) Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol 5:218–223

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wei W, Pang X, Wang X, Zhang H, Dong B, Xing Y, Li X, Wang M (2014) Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. BMC Genom 15:671

    Article  Google Scholar 

  • Yuan Y, Ma XH, Shi Y, Tang DQ (2013) Isolation and expression analysis of six putative structural genes involved in anthocyanin biosynthesis in Tulipa fosteriana. Sci Hortic 153:93–102

    Article  CAS  Google Scholar 

  • Zhang Y (2008) i-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  Google Scholar 

  • Zhang M, Dong JF, Jin HH, Sun LN, Xu MJ (2011) UV-B-induced flavonoid accumulation in Betula pendula leaves is dependent upon nitrate reductase-mediated nitric oxide signaling. Tree Physiol 31:798–807

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Tao J, Han C, Ge J (2012) Flower color diversity revealed by differential expression of flavonoid biosynthetic genes and flavonoid accumulation in herbaceous peony (Paeonia lactiflora Pall.). Mol Biol Rep 39:11263–11275

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Tang W, Hao Z, Tao J (2015) Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers. Biochem Biophys Res Commun 459:450–456

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Wang Y, Ren L, Shi QQ, Zheng BQ, Miao K, Guo X (2014) Overexpression of Ps-CHI1, a homologue of the chalcone isomerase gene from tree peony (Paeonia suffruticosa), reduces the intensity of flower pigmentation in transgenic tobacco. Plant Cell Tiss Organ Cult 16:285–295

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (NRF-2013M2A2A6043621) of Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning, Republic of Korea.

Author contribution

SS carried out bioinformatics analysis and drafted the manuscript. H-JH participated in the study and helped drafting the manuscript. NP and S-HC assisted in the drafting of the manuscript. G-JL supervised the study and assisted in the drafting of the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geung-Joo Lee.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interests.

Additional information

Saminathan Subburaj and Hye-Jeong Ha have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Predicted Chalcone isomerase gene models and related information on Tradescantia. (DOCX 13 kb)

13562_2017_396_MOESM2_ESM.docx

List of primers designed and used in qRT-PCR analysis to determine the mRNA expression levels of TrCHIs transcripts. (DOCX 14 kb)

Identity (%) of nucleotide and amino acid sequences in domain regions between the TrCHIs. (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subburaj, S., Ha, HJ., Park, N. et al. Chalcone isomerase-like genes in Tradescantia BNL4430: identification, molecular characterization, and differential expression profiles under Ɣ-radiation stress. J. Plant Biochem. Biotechnol. 26, 330–345 (2017). https://doi.org/10.1007/s13562-017-0396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-017-0396-8

Keywords

Navigation