Skip to main content
Log in

Centromeric histone H3 protein: from basic study to plant breeding applications

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Centromere is the defining unit of a chromosome where kinetochore complex assembles and facilitates chromosome segregation. Centromeres contain unique repetitive sequences and are enriched with transposons and retrotransposons. Although how centromere is determined is still not clearly understood, binding of a key protein, namely, the Centromeric Histone H3 (CENH3) to centromeric repetitive DNA sequences has been found to be critical for the specification of centromere. Hence, centromeres are said to be epigenetically specified by CENH3. Despite considerable variation in size and sequence, CENH3 protein shows significant conservation of structure and function. CENH3 disruption or overexpression shows severe defects in spindle fiber attachment and ultimately leads to embryo lethality. Basic studies on complementation of CENH3 in Arabidopsis thaliana have led to the development of a novel method of haploid production through selective elimination of one set of parental chromosomes in the zygote. These findings have also shed new light on selective loss of chromosomes in interspecific crosses of Hordeum vulgare × H. bulbosum. Here, we briefly review unique features of CENH3 and discuss the new plant breeding opportunities that have emerged from the study of CENH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CATD:

CENP-A targeting domain

CID:

Centromere identifier

CPAR-1:

Centromeric protein A related 1

CSE4:

Chromosome segregation 4

HCP3:

Holocentric protein 3

HFD:

Histone fold domain

HTR12:

Histone three related 12

References

  • Bailey AO, Panchenko T, Sathyan KM, Petkowski JJ, Pai PJ, Bai DL, Russell DH, Macara IG, Shabanowitz J, Hunt DF, Black BE, Foltz DR (2013) Post translational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci USA 110:11827–11832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birchler JA, Gao Z, Sharma A, Presting GG, Han F (2011) Epigenetic aspects of centromere function in plants. Curr Opin Plant Biol 14:217–222

    Article  CAS  PubMed  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Virgil L, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582

    Article  CAS  PubMed  Google Scholar 

  • Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S (1999) A histone-H3-like protein in C. elegans. Nature 401:547–548

    Article  CAS  PubMed  Google Scholar 

  • D’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol 7:e1000124M. doi:10.1371/journal.pbio.1000124

    Article  Google Scholar 

  • Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CL, Voermans W, Woudenberg L, de Wit JP, Reinink K, Schut JW, van der Zeeuw E, Vogelaar A, Freymark G, Gutteling EW, Keppel MN, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, de Jong H, Wijnker E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunemann F, Schrader O, Budahn H, Houben A (2014) Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.). PLoS ONE 9:e98504

    Article  PubMed  PubMed Central  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere protein using autoimmune sera from patients with sclerodoma. Chromosoma 91:313–321

    Article  CAS  PubMed  Google Scholar 

  • Ekwall K (2007) Epigenetic control of centromere behavior. Annu Rev Genet 41:63–81

    Article  CAS  PubMed  Google Scholar 

  • Hall SE, Kettler G, Preuss D (2003) Centromere satellites from Arabidopsis populations: maintenance of conserved and variable domains. Genome Res 13:195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AE, Keith KC, Hall SE, Copenhaver GP, Preuss D (2004) The rapidly evolving field of plant centromeres. Curr Opin Plant Biol 7:108–114

    Article  CAS  PubMed  Google Scholar 

  • Heckmann S, Lermontova I, Berckmans B, Veylder LD, Baumlein H, Schubert I (2011) The E2F transcription factor family regulates CENH3 expression in Arabidopsis thaliana. Plant J 68:646–656

    Article  CAS  PubMed  Google Scholar 

  • Henikoff S, Ahmad K, Platero JS, Van Steensel B (2000) Heterochromatic deposition of centromeric histone H3-like proteins. Proc Natl Acad Sci USA 97:716–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heun P, Erhardt S, Blower MD, Weiss S, Skora AD, Karpen GH (2006) Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev Cell 10:303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH (2000) Early disruption of centromeric chromatin organization organization in centromeric protein A (Cenpa) null mice. Proc Natl Acad Sci USA 97:1148–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui L, Lu L, Heng Y, Qin R, Xing Y, Jin W (2010) Expression of CENH3 alleles in synthesized allopolyploid Oryza species. J Genet Genomics 37(10):703–711

    Article  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, Banaei-Moghaddam AM, Fuchs J, Schubert V, Koch K, Weiss O, Demidov D, Schmidt K, Kumlehn J, Houben A (2015) Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci USA. doi:10.1073/pnas.1504333112

    PubMed  PubMed Central  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Kawabe A, Nasuda S, Charlesworth D (2006) Duplication of centromeric histone H3 (HTR12) gene in Arabidopsis halleri and A. lyrata, plant species with multiple centromeric satellite sequences. Genetics 174:2021–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414. doi:10.3389/fpls.2016.00414

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SWL (2015) Point mutations in centromeric histone induce post-zygotic incompatibility and uniparental inheritance. PLoS Genet 11(9):e1005494. doi:10.1371/journal.pgen.1005494

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 76:393–397

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I (2006) Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence the presence of the histone fold domain. Plant Cell 18:2443–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lermontova I, Fuchs J, Schubert V, Schubert I (2007) Loading time of the centromeric histone H3 variant differs between plants and animals. Chromosoma 116:507–510

    Article  PubMed  Google Scholar 

  • Lermontova I, Koroleva O, Rutten T, Fuchs J, Schubert V, Moraes I, Koszegi D, Schubert I (2011) Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation. Plant J 68:40–50

    Article  CAS  PubMed  Google Scholar 

  • Li ZY, Ge XH (2007) Unique chromosome behavior and genetic control in Brassica × Orychophragmus wide hybrids: a review. Plant Cell Rep 26:701–710

    Article  CAS  PubMed  Google Scholar 

  • Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim YP, Park BS (2007) Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183

    Article  CAS  PubMed  Google Scholar 

  • Maehara K, Takahashi K, Saitoh S (2010) CENP-A reduction induces a p53-dependent cellular senescence response to protect cells from executing defective mitoses. Mol Cell Biol 30:2090–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet 11(1):e1004970

    Article  PubMed  PubMed Central  Google Scholar 

  • Marimuthu MP, Jolivet S, Ravi M, Pereira L, Davda JN, Cromer L, Wang L, Nogue F, Chan SW, Siddiqi I, Mercier R (2011) Synthetic clonal reproduction through seeds. Science 331:876

    Article  CAS  PubMed  Google Scholar 

  • Maruyama S, Kuroiwa H, Miyagishima SY, Tanaka K, Kuroiwa T (2007) Centromere dynamics in the primitive red alga Cyanidioschyzon merolae. Plant J 49:1122–1129

    Article  CAS  PubMed  Google Scholar 

  • Masonbrink RE, Gallagher JP, Jareczek JJ, Renny-byfield S, Grover CE, Gong L, Wendel JF (2014) CenH3 evolution in diploids and polyploids of three angiosperm genera. BMC Plant Biol 14:383–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, Derisi JL, Smith T, Tobias C, Ross-Ibarra J, Korf I, Chan SW (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendiburo MJ, Padeken J, Fulop S, Schepers A, Heun P (2011) Drosophila CENH3 is sufficient for centromere formation. Science 334:686–690

    Article  CAS  PubMed  Google Scholar 

  • Monen J, Maddox PS, Hyndman F, Oegema K, Desai A (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7:1248–1255

    Article  PubMed  Google Scholar 

  • Nagaki K, Murata M (2005) Characterization of CENH3 and centromere-associated DNA sequences in sugarcane. Chromosome Res 13:195–203

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2005) Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell 17:886–1893

    Article  Google Scholar 

  • Nagaki K, Kashihara K, Murata M (2009) A centromere DNA sequence colocalized with a centromere-specific histone H3 in tobacco. Chromosoma 118:249–257

    Article  CAS  PubMed  Google Scholar 

  • Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M (2012) Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium. PLoS ONE 7:e51315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann P, Navratilova A, Schroeder-Reiter E, Kobližkova A, Steinbauerova V, Chocholova E, Novak P, Wanner G, Macas J (2012) Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet 8:e1002777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann P, Pavlíková Z, Koblížková A, Fuková I, Jedličková V, Novák P, Macas J (2015) Centromeres off the hook: massive changes in centromere size and structure following duplication of CenH3 gene in Fabeae species. Mol Biol Evol. doi:10.1093/molbev/msv070

    PubMed  PubMed Central  Google Scholar 

  • Palmer DK, O’Day K, Wemer MH, Andrews BS, Margolis RL (1987) A 17- KD centromere protein (CENP-A) co-purifies with nucleosome core particles and with histones. J Cell Biol 104:805–815

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–619

    Article  CAS  PubMed  Google Scholar 

  • Samel A, Cuomo A, Bonaldi T, Ehrenhofer-Murray AE (2012) Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proc Natl Acad Sci USA 109:9029–9034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA 108:498–505

    Article  Google Scholar 

  • Schuh M, Lehner CF, Heidmann S (2007) Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol 17:237–243

    Article  CAS  PubMed  Google Scholar 

  • Shelby RD, Monier K, Sullivan KF (2000) Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol 151:1113–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–2219

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Takayama Y, Masuda F, Kobayashi Y, Saitoh S (2005) Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle. Philos Trans R Soc Lond B Biol Sci 360:595–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tek AL, Kashihara K, Murata M, Nagaki K (2014) Identification of the centromere-specific histone H3 variant in Lotus japonicus. Gene 538:8–11

    Article  CAS  PubMed  Google Scholar 

  • Wang G, He Q, Liu F, Cheng Z, Talbert PB, Jin W (2011) Characterization of CENH3 proteins and centromere associated DNA sequences in diploid and allotetraploid Brassica species. Chromosoma 120:353–365

    Article  CAS  PubMed  Google Scholar 

  • Wijnker E, van Dun K, de Snoo CB, Lelivelt CL, Keurentjes JJ, Naharudin NS, Ravi M, Chan SW, de Jong H, Dirks R (2012) Reverse breeding in Arabidopsis generates homozygous parental lines from a heterozygous plant. Nat Genet 44(4):467–470

    Article  CAS  PubMed  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shripad Ramachandra Bhat.

Ethics declarations

Conflict of interest

AW and VK received Research Fellowship from ICAR/IARI, New Delhi, India. SRB has received grant from the Department of Biotechnology, Govt. of India for pursuing work on CENH3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watts, A., Kumar, V. & Bhat, S.R. Centromeric histone H3 protein: from basic study to plant breeding applications. J. Plant Biochem. Biotechnol. 25, 339–348 (2016). https://doi.org/10.1007/s13562-016-0368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-016-0368-4

Keywords

Navigation