Skip to main content
Log in

« Nouvelles » molécules anti-infectieuses. Quelle place en médecine intensive/réanimation pour ceftolozane–tazobactam et la témocilline ?

“New” drugs for infectious diseases: Can ceftolozane–tazobactam and temocillin be used in intensive care

  • Mise au Point / Update
  • Published:
Médecine Intensive Réanimation

Résumé

L’évolution épidémiologique actuelle expose les réanimateurs à des infections dues à des bactéries multirésistantes, notamment les entérobactéries productrices de bêtalactamases à spectre étendu (BLSE) et les bacilles à Gram— non fermentants. L’une des conséquences est une augmentation de la consommation de carbapénèmes, à l’origine de l’émergence de souches résistantes à cette dernière classe, notamment par production de carbapénèmases. La situation devient particulièrement critique avec de véritables impasses thérapeutiques et des craintes légitimes quant à l’avenir de l’antibiothérapie. Deux molécules récentes peuvent permettre de répondre à des situations de difficulté thérapeutique tout en envisageant une épargne des carbapénèmes : le ceftolozane–tazobactam (C–T) et la témocilline. Le spectre principal de C–T concerne essentiellement les infections à Pseudomonas aeruginosa, et à certaines entérobactéries productrices de BLSE, à l’exception notable des classes B et D. Les données cliniques disponibles concernent essentiellement les infections intra-abdominales et urinaires, et des essais en cours pourraient permettre de documenter la place théorique de cette association dans la prise en charge des infections respiratoires, notamment acquises sous ventilation mécanique. Le spectre principal de la témocilline concerne les infections à entérobactéries productrices de BLSE. Cependant, les données cliniques sont anciennes, essentiellement rétrospectives et concernent peu les malades de réanimation. L’enjeu de l’utilisation de ces molécules pouvant répondre à une problématique écologique est de bien peser le pour et le contre de leur prescription, dans un contexte de contraintes budgétaires d’une part, et dans la nécessité d’une préservation de leur efficacité d’autre part, ce qui ne peut se concevoir que dans le cadre d’une politique globale d’utilisation des antibiotiques.

Abstract

Because of the actual epidemiologic evolution, intensivists must manage infections due to multidrug resistant bacteria, especially enterobacteria producing extending spectrum beta-lactamase (ESBL) and non-fermentative Gram— bacteria. This is also the cause of an increasing prescription of carbapenems, which results again in the emergence of resistance, especially by the production of carbapenemases. The emergence of such resistance makes it difficult, in fact almost impossible, to treat some infections, and justifies fears for the future of antibiotics. Two molecules can help in these therapeutic difficulties, while allowing a decrease in the use of carbapenems — ceftolozane–tazobactam (C–T) and temocillin. The spectrum of C–T includes mainly infections due to Pseudomonas aeruginosa, and to some enterobacteria producing ESBL, with the exception of B and D classes. There is available clinical data of the use of these molecules to treat intra-abdominal and urinary tract infections. Ongoing clinical trials could allow the documentation of the theoretical interest of these molecules to treat respiratory tract infections, especially ventilatory acquired pneumonia. The main spectrum of temocillin is the infections due to Enterobacteria producing ESBL. However, clinical data are quite old, retrospective, and few are about intensive care patients. The pros and cons of the use of these molecules, to respond to an ecological matter, has to be considered in the perspective of economic constraints on the one hand, and by the necessity to preserve their efficacy on the other hand. This must be included in an antimicrobial stewardship program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Karam G, Chastre J, Wilcox MH, Vincent JL, (2016) Antibiotic strategies in the era of multidrug resistance. Crit Care 20: 136

    Article  PubMed  PubMed Central  Google Scholar 

  2. Boucher HW, Talbot GH, Benjamin DK Jr, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, Infectious Diseases Society of A, (2013) 10X′20 Progress — development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56: 1685–1694

    Article  PubMed  PubMed Central  Google Scholar 

  3. Spellberg B, (2014) The future of antibiotics. Crit Care 18: 228

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P, (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32: 234–258

    Article  CAS  PubMed  Google Scholar 

  5. Murano K, Yamanaka T, Toda A, Ohki H, Okuda S, Kawabata K, Hatano K, Takeda S, Akamatsu H, Itoh K, Misumi K, Inoue S, Takagi T, (2008) Structural requirements for the stability of novel cephalosporins to AmpC beta-lactamase based on 3D-structure. Bioorg Med Chem 16: 2261–2275

    Article  CAS  PubMed  Google Scholar 

  6. Castanheira M, Mills JC, Farrell DJ, Jones RN, (2014) Mutationdriven beta-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from US hospitals. Antimicrob Agents Chemother 58: 6844–6850

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhanel GG, Lawson CD, Adam H, Schweizer F, Zelenitsky S, Lagace-Wiens PR, Denisuik A, Rubinstein E, Gin AS, Hoban DJ, Lynch JP 3rd, Karlowsky JA, (2013) Ceftazidime–avibactam: a novel cephalosporin/beta-lactamase inhibitor combination. Drugs 73: 159–177

    Article  CAS  PubMed  Google Scholar 

  8. Moya B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, Oliver A, (2012) Pan-beta-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother 56: 4771–4778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van Duin D, Bonomo RA, (2016) Ceftazidime–avibactam and ceftolozane–tazobactam: second-generation beta-lactam/betalactamase inhibitor combinations. Clin Infect Dis 63: 234–241

    Article  PubMed  PubMed Central  Google Scholar 

  10. Papp-Wallace KM, Bonomo RA, (2016) New beta-lactamase inhibitors in the clinic. Infect Dis Clin North Am 30: 441–464

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buehrle DJ, Shields RK, Chen L, Hao B, Press EG, Alkrouk A, Potoski BA, Kreiswirth BN, Clancy CJ, Nguyen MH, (2016) Evaluation of the in vitro activity of ceftazidime–avibactam and ceftolozane–tazobactam against meropenem-resistant Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 60: 3227–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takeda S, Nakai T, Wakai Y, Ikeda F, Hatano K, (2007) In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 51: 826–830

    Article  CAS  PubMed  Google Scholar 

  13. Sader HS, Farrell DJ, Flamm RK, Jones RN, (2014) Ceftolozane–tazobactam activity tested against aerobic Gram-negative organisms isolated from intra-abdominal and urinary tract infections in European and United States hospitals (2012). J Infect 69: 266–277

    Article  PubMed  Google Scholar 

  14. Farrell DJ, Sader HS, Flamm RK, Jones RN, (2014) Ceftolozane–tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int J Antimicrob Agents 43: 533–539

    Article  CAS  PubMed  Google Scholar 

  15. Titelman E, Karlsson IM, Ge Y, Giske CG, (2011) In vitro activity of CXA-101 plus tazobactam (CXA-201) against CTXM- 14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae. Diagn Microbiol Infect Dis 70: 137–141

    Article  CAS  PubMed  Google Scholar 

  16. Scott LJ, (2016) Ceftolozane–tazobactam: a review in complicated intra-abdominal and urinary tract infections. Drugs 76: 231–242

    Article  CAS  PubMed  Google Scholar 

  17. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf

  18. Chandorkar G, Huntington JA, Gotfried MH, Rodvold KA, Umeh O, (2012) Intrapulmonary penetration of ceftolozane–tazobactam and piperacillin–tazobactam in healthy adult subjects. J Antimicrob Chemother 67: 2463–2469

    Article  CAS  PubMed  Google Scholar 

  19. Chandorkar G, Xiao A, Mouksassi MS, Hershberger E, Krishna G, (2015) Population pharmacokinetics of ceftolozane–tazobactam in healthy volunteers, subjects with varying degrees of renal function and patients with bacterial infections. J Clin Pharmacol 55: 230–239

    Article  CAS  PubMed  Google Scholar 

  20. Wise R, Andrews JM, Ashby JP, Thornber D, (1991) In vitro activity of a catechol-substituted cephalosporin, GR69153. Antimicrob Agents Chemother 35: 329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuti JL, Ghazi IM, Quintiliani R Jr, Shore E, Nicolau DP, (2016) Treatment of multidrug-resistant Pseudomonas aeruginosa with ceftolozane–tazobactam in a critically ill patient receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents 48: 342–343

    Article  CAS  PubMed  Google Scholar 

  22. Jacqueline C, Roquilly A, Desessard C, Boutoille D, Broquet A, Le Mabecque V, Amador G, Potel G, Caillon J, Asehnoune K, (2013) Efficacy of ceftolozane in a murine model of Pseudomonas aeruginosa acute pneumonia: in vivo antimicrobial activity and impact on host inflammatory response. J Antimicrob Chemother 68: 177–183

    Article  CAS  PubMed  Google Scholar 

  23. Wagenlehner FM, Umeh O, Steenbergen J, Yuan G, Darouiche RO, (2015) Ceftolozane–tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 385: 1949–1956

    Article  CAS  PubMed  Google Scholar 

  24. Lucasti C, Hershberger E, Miller B, Yankelev S, Steenbergen J, Friedland I, Solomkin J, (2014) Multicenter, double-blind, randomized, phase 2 trial to assess the safety and efficacy of ceftolozane–tazobactam plus metronidazole compared with meropenem in adult patients with complicated intra-abdominal infections. Antimicrob Agents Chemother 58: 5350–5357

    Article  PubMed  PubMed Central  Google Scholar 

  25. Solomkin J, Hershberger E, Miller B, Popejoy M, Friedland I, Steenbergen J, Yoon M, Collins S, Yuan G, Barie PS, Eckmann C, (2015) Ceftolozane–tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin Infect Dis 60: 1462–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Popejoy MW, Paterson DL, Cloutier D, Huntington JA, Miller B, Bliss CA, Steenbergen JN, Hershberger E, Umeh O, Kaye KS, (2017) Efficacy of ceftolozane–tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of phase 3 clinical trials. J Antimicrob Chemother 72: 268–272

    Article  PubMed  Google Scholar 

  27. HAS, (2016) In: Editor (ed) (eds) Book., City, http://www.hassante. fr/portail/upload/docs/evamed/CT-14850_ZERBAXA_PIC_ INS_Avis3_CT14850.pdf

    Google Scholar 

  28. Montravers P, Dupont H, Leone M, Constantin JM, Mertes PM, Société française d’anesthésie et de réanimation, Société de réanimation de langue française, Laterre PF, Misset B, Société de pathologie infectieuse de langue française, Bru JP, Gauzit R, Sotto A, Association française de chirurgie, Brigand C, Hamy A, Société française de chirurgie digestive, Tuech JJ, (2015) Guidelines for management of intra-abdominal infections. Anaesth Crit Care Pain Med 34: 117–130

    Article  PubMed  Google Scholar 

  29. 2015) Recommandations SPILF infections urinaires. In: Editor (ed) (eds) Book Recommandations SPILF infections urinaires. City, http://www.infectiologie.com/UserFiles/File/spilf/recos/ infections-urinaires-spilf.pdf

  30. Malottke R, Potel J (1985) Antibacterial activity of temocillin. Drugs 29: 67–73

    Article  CAS  PubMed  Google Scholar 

  31. Bolivar R, Weaver SS, Bodey GP, (1982) Comparative in vitro study of temocillin (BRL 17421), a new penicillin. Antimicrob Agents Chemother 21: 641–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Livermore DM, Tulkens PM, (2009) Temocillin revived. J Antimicrob Chemother 63: 243–245

    Article  CAS  PubMed  Google Scholar 

  33. Clarke AM, Zemcov SJ, (1983) Comparative in vitro activity of temocillin (BRL 17421), a new penicillin. J Antimicrob Chemother 11: 319–324

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Villalobos H, Malaviolle V, Frankard J, de Mendonca R, Nonhoff C, Struelens MJ, (2006) In vitro activity of temocillin against extended spectrum beta-lactamase-producing Escherichia coli. J Antimicrob Chemother 57: 771–774

    Article  CAS  PubMed  Google Scholar 

  35. Glupczynski Y, Huang TD, Berhin C, Claeys G, Delmee M, Ide L, Ieven G, Pierard D, Rodriguez-Villalobos H, Struelens M, Vaneldere J, (2007) In vitro activity of temocillin against prevalent extended-spectrum beta-lactamases producing Enterobacteriaceae from Belgian intensive care units. Eur J Clin Microbiol Infect Dis 26: 777–783

    Article  CAS  PubMed  Google Scholar 

  36. Livermore DM, Hope R, Fagan EJ, Warner M, Woodford N, Potz N, (2006) Activity of temocillin against prevalent ESBL- and AmpC-producing Enterobacteriaceae from south-east England. J Antimicrob Chemother 57: 1012–1014

    Article  CAS  PubMed  Google Scholar 

  37. Adams-Haduch JM, Potoski BA, Sidjabat HE, Paterson DL, Doi Y, (2009) Activity of temocillin against KPC-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 53: 2700–2701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woodford N, Pike R, Meunier D, Loy R, Hill R, Hopkins KL, (2014) In vitro activity of temocillin against multidrug-resistant clinical isolates of Escherichia coli, Klebsiella spp. and Enterobacter spp., and evaluation of high-level temocillin resistance as a diagnostic marker for OXA-48 carbapenemase. J Antimicrob Chemother 69: 564–567

    Article  CAS  PubMed  Google Scholar 

  39. Soubirou J, (2013) Témocilline, une alternative aux carbapénèmes pour traiter les infections à entérobactéries résistantes aux C3G? J Anti-Infect 15: 60–70

    Article  Google Scholar 

  40. Slocombe B, Basker MJ, Bentley PH, Clayton JP, Cole M, Comber KR, Dixon RA, Edmondson RA, Jackson D, Merrikin DJ, Sutherland R, (1981) BRL 17421, a novel beta-lactam antibiotic, highly resistant to beta-lactamases, giving high and prolonged serum levels in humans. Antimicrob Agents Chemother 20: 38–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vanstone GL, Dilley R, Schwenk S, Williams A, Balakrishnan I, (2013) Temocillin disc diffusion susceptibility testing by EUCAST methodology. J Antimicrob Chemother 68: 2688–2689

    Article  CAS  PubMed  Google Scholar 

  42. Patel TA, Dilley R, Williams A, Vanstone GL, Balakrishnan I, (2013) Comparison of the Phoenix Automated System, the Etest® method and broth microdilution in determining temocillin susceptibility of Enterobacteriaceae. J Antimicrob Chemother 68: 1685–1686

    Article  CAS  PubMed  Google Scholar 

  43. Hampel B, Feike M, Koeppe P, Lode H, (1985) Pharmacokinetics of temocillin in volunteers. Drugs 29: 99–102

    Article  CAS  PubMed  Google Scholar 

  44. Lockley MR, Brown RM, Wise R, (1985) Pharmacokinetics and tissue penetration of temocillin. Drugs 29: 106–108

    Article  CAS  PubMed  Google Scholar 

  45. Bruckner O, Trautmann M, Borner K, (1985) A study of the penetration of temocillin in the cerebrospinal fluid. Drugs 29: 162–166

    Article  PubMed  Google Scholar 

  46. De Jongh R, Hens R, Basma V, Mouton JW, Tulkens PM, Carryn S, (2008) Continuous versus intermittent infusion of temocillin, a directed spectrum penicillin for intensive care patients with nosocomial pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint selection. J Antimicrob Chemother 61: 382–388

    Article  PubMed  Google Scholar 

  47. Laterre PF, Wittebole X, Van de Velde S, Muller AE, Mouton JW, Carryn S, Tulkens PM, Dugernier T, (2015) Temocillin (6 g daily) in critically ill patients: continuous infusion versus three times daily administration. J Antimicrob Chemother 70: 891–898

    Article  CAS  PubMed  Google Scholar 

  48. Boelaert J, Daneels R, Schurgers M, Mellows G, Swaisland AJ, Lambert AM, Van Landuyt HW, (1985) Effect of renal function and dialysis on temocillin pharmacokinetics. Drugs 29: 109–113

    Article  PubMed  Google Scholar 

  49. Balakrishnan I, Awad-El-Kariem FM, Aali A, Kumari P, Mulla R, Tan B, Brudney D, Ladenheim D, Ghazy A, Khan I, Virgincar N, Iyer S, Carryn S, Van de Velde S, (2011) Temocillin use in England: clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC betalactamase- producing Enterobacteriaceae. J Antimicrob Chemother 66: 2628–2631

    Article  CAS  PubMed  Google Scholar 

  50. Habayeb H, Sajin B, Patel K, Grundy C, Al-Dujaili A, Van de Velde S, (2015) Amoxicillin plus temocillin as an alternative empiric therapy for the treatment of severe hospital-acquired pneumonia: results from a retrospective audit. Eur J Clin Microbiol Infect Dis 34: 1693–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Poissy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poissy, J., Parmentier-Decrucq, E., Thieffry, C. et al. « Nouvelles » molécules anti-infectieuses. Quelle place en médecine intensive/réanimation pour ceftolozane–tazobactam et la témocilline ?. Méd. Intensive Réa 26, 224–232 (2017). https://doi.org/10.1007/s13546-017-1267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-017-1267-y

Mots clés

Keywords

Navigation