Skip to main content
Log in

L’hyponatrémie chez le patient cérébrolésé en soins intensifs : étiologie et prise en charge

Hyponatremia in the neurologic patient in intensive care unit: Etiology and treatment

  • Mise au Point / Update
  • Published:
Médecine Intensive Réanimation

Résumé

L’hyponatrémie est le désordre électrolytique le plus fréquent chez le patient cérébrolésé hospitalisé en soins intensifs. Elle constitue un facteur de mauvais pronostic, augmentant significativement la mortalité. Nous présentons une revue concernant les étiologies, la physiopathologie et, plus particulièrement, le traitement de cette pathologie. La majorité de ces hyponatrémies est secondaire au syndrome de sécrétion inappropriée d’hormone antidiurétique ou au « syndrome cérébral de perte de sel ». La différence entre ces deux syndromes réside principalement dans l’appréciation de l’état volémique du patient, difficilement évaluable en réanimation. L’insuffisance surrénale aiguë, l’hypovolémie et l’administration inadéquate de solutés hypotoniques sont également des étiologies fréquentes. Bien que l’approche thérapeutique puisse varier en fonction de différents facteurs tels que la pathologie neurologique sous-jacente et la vitesse d’installation de l’hyponatrémie, l’administration de sérum salé hypertonique (SSH) 3 % constitue la pierre angulaire du traitement lors d’hyponatrémie sévère. L’utilisation d’autres molécules, comme la fludrocortisone ou les antagonistes de l’hormone antidiurétique, a été étudiée et pourrait être une voie thérapeutique intéressante. La physiopathologie de l’hyponatrémie chez les patients cérébrolésés est encore mal comprise. Le SSH constitue le traitement de choix dans l’hyponatrémie sévère ou symptomatique dans cette population.

Abstract

Hyponatremia is the most prevalent electrolytic disorder found in patients with neurologic disorder hospitalized in the intensive care unit (ICU). It is a poor prognostic factor and increases mortality rates in these patients.We present a review concerning the etiology, pathophysiology, and particularly, the treatment of this pathology. Most cases of hyponatremia are caused either by the syndrome of inappropriate antidiuretic hormone secretion or by the cerebral salt wasting syndrome. The difference between them is the volemia of the patient, which is difficult to assess, especially in the ICU. Adrenal insufficiency, hypovolemia, and inadequate fluid resuscitation are also common causes of hyponatremia in the neurologic ICU. Even if the therapeutic approach varies accordingly to the concomitant neurological disorder and how fast the hyponatremia occurred, hypertonic saline solution is the cornerstone of the treatment in severe or symptomatic hyponatremia. The use of other molecules, such as fludrocortisone and antidiuretic hormone antagonist could be an interesting option in the future. The pathophysiology of hyponatremia in neurologically ill patients is not well understood. However, HSS is the treatment of choice in severe or symptomatic hyponatremia in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Kirkman MA (2014) Managing hyponatremia in neurosurgical patients. Minerva Endocrinol 39:13–26

    CAS  PubMed  Google Scholar 

  2. Sterns RH, Silver SM (2008) Cerebral salt wasting versus SIADH: what difference? J Am Soc Nephrol 19:194–6

    Article  PubMed  Google Scholar 

  3. Sherlock M, O’Sullivan E, Agha A, et al (2009) Incidence and pathophysiology of severe hyponatraemia in neurosurgical patients. Postgrad Med J 85:171–5

    Article  CAS  PubMed  Google Scholar 

  4. Verbalis JG, Goldsmith SR, Greenberg A, et al (2013) Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am J Med 126:S1–S42

    Article  PubMed  Google Scholar 

  5. Maesaka JK, Imbriano LJ, Ali NM, et al (2009) Is it cerebral or renal salt wasting? Kidney Int 76:934–8

    Article  PubMed  Google Scholar 

  6. Spasovski G, Vanholder R, Allolio B, et al (2014) Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensive Care Med 40:320–31

    Article  PubMed  Google Scholar 

  7. Corona G, Giuliani C, Parenti G, et al (2013) Moderate hyponatremia is associated with increased risk of mortality: evidence from a meta-analysis. PLoS One 8:e80451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Darmon M, Diconne E, Souweine B, et al (2013) Prognostic consequences of borderline dysnatremia: pay attention to minimal serum sodium change. Crit Care 17:R12

    Article  PubMed  PubMed Central  Google Scholar 

  9. Darmon M, Pichon M, Schwebel C, et al (2014) Influence of early dysnatremia correction on survival of critically ill patients. Shock 41:394–9

    Article  PubMed  Google Scholar 

  10. Sturdik I, Adamcova M, Kollerova J, et al (2014) Hyponatraemia is an independent predictor of in-hospital mortality. Eur J Intern Med 25:379–82

    Article  CAS  PubMed  Google Scholar 

  11. Audibert G, Hoche J, Baumann A, et al (2012) Water and electrolytes disorders after brain injury: mechanism and treatment. Ann Fr Anesth Reanim 31:e109–e15

    Article  CAS  PubMed  Google Scholar 

  12. Vantyghem MC, Balavoine AS, Wemeau JL, et al (2011) Hyponatremia and antidiuresis syndrome. Ann Endocrinol (Paris) 72:500–12

    Article  CAS  Google Scholar 

  13. Peri A, Giuliani C (2014) Management of euvolemic hyponatremia attributed to SIADH in the hospital setting. Minerva Endocrinol 39:33–41

    CAS  PubMed  Google Scholar 

  14. Rahman M, Friedman WA (2009) Hyponatremia in neurosurgical patients: clinical guidelines development. Neurosurgery 65:925–35; discussion 935–6

    Article  PubMed  Google Scholar 

  15. Nakagawa I, Kurokawa S, Nakase H (2010) Hyponatremia is predictable in patients with aneurysmal subarachnoid hemorrhage — clinical significance of serum atrial natriuretic peptide. Acta Neurochir (Wien) 152:2147–52

    Article  Google Scholar 

  16. Youmans SJ, Fein MR, Wirkowski E, et al (2013) Demonstration of natriuretic activity in urine of neurosurgical patients with renal salt wasting. F1000Res 2:126

    PubMed  PubMed Central  Google Scholar 

  17. Brimioulle S, Orellana-Jimenez C, Aminian A, et al (2008) Hyponatremia in neurological patients: cerebral salt wasting versus inappropriate antidiuretic hormone secretion. Intensive Care Med 34:125–31

    Article  CAS  PubMed  Google Scholar 

  18. Sterns RH, Nigwekar SU, Hix JK (2009) The treatment of hyponatremia. Semin Nephrol 29:282–99

    Article  CAS  PubMed  Google Scholar 

  19. Hwang JJ, Hwang DY (2014) Treatment of endocrine disorders in the neuroscience intensive care unit. Curr Treat Options Neurol 16:271

    Article  PubMed  Google Scholar 

  20. Singh S, Bohn D, Carlotti AP, et al (2002) Cerebral salt wasting: truths, fallacies, theories, and challenges. Crit Care Med 30:2575–9

    Article  PubMed  Google Scholar 

  21. Sterns RH (2015) Disorders of plasma sodium — causes, consequences, and correction. N Engl J Med 372:55–65

    Article  CAS  PubMed  Google Scholar 

  22. Ayus JC, Wheeler JM, Arieff AI (1992) Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med 117:891–7

    Article  CAS  PubMed  Google Scholar 

  23. Kao L, Al-Lawati Z, Vavao J, et al (2009) Prevalence and clinical demographics of cerebral salt wasting in patients with aneurysmal subarachnoid hemorrhage. Pituitary 12:347–51

    Article  PubMed  Google Scholar 

  24. Hannon MJ, Behan LA, O’Brien MM, et al (2014) Hyponatremia following mild/moderate subarachnoid hemorrhage is due to SIAD and glucocorticoid deficiency and not cerebral salt wasting. J Clin Endocrinol Metab 99:291–8

    Article  CAS  PubMed  Google Scholar 

  25. Huang WY, Weng WC, Peng TI, et al (2012) Association of hyponatremia in acute stroke stage with three-year mortality in patients with first-ever ischemic stroke. Cerebrovasc Dis 34:55–62

    Article  CAS  PubMed  Google Scholar 

  26. Soiza RL, Cumming K, Clark AB, et al (2015) Hyponatremia predicts mortality after stroke. Int J Stroke 10:50–5

    Article  PubMed  Google Scholar 

  27. Serafini A, Gigli GL, Gregoraci G, et al (2015) Are early seizures predictive of epilepsy after a stroke? Results of a populationbased study. Neuroepidemiology 45:50–8

    Article  PubMed  Google Scholar 

  28. Meng X, Shi B (2016) Traumatic brain injury patients with a Glasgow Coma Scale Score of = 8, cerebral edema, and/or a basal skull fracture are more susceptible to developing hyponatremia. J Neurosurg Anesthesiol 28:21–6

    PubMed  Google Scholar 

  29. Cohan P, Wang C, McArthur DL, et al (2005) Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Crit Care Med 33:2358–66

    Article  CAS  PubMed  Google Scholar 

  30. Agha A, Rogers B, Mylotte D, et al (2004) Neuroendocrine dysfunction in the acute phase of traumatic brain injury. Clin Endocrinol (Oxf) 60:584–91

    Article  CAS  Google Scholar 

  31. Schneider HJ, Kreitschmann-Andermahr I, Ghigo E, et al (2007) Hypothalamopituitary dysfunction following traumatic brain injury and aneurysmal subarachnoid hemorrhage: a systematic review. JAMA 298:1429–38

    Article  CAS  PubMed  Google Scholar 

  32. Glynn N, Agha A (2013) Which patient requires neuroendocrine assessment following traumatic brain injury, when and how? Clin Endocrinol (Oxf) 78:17–20

    Article  Google Scholar 

  33. Edwards P, Arango M, Balica L, et al (2005) Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet 365:1957–9

    Article  PubMed  Google Scholar 

  34. Jahangiri A, Wagner J, Tran MT, et al (2013) Factors predicting postoperative hyponatremia and efficacy of hyponatremia management strategies after more than 1,000 pituitary operations. J Neurosurg 119:1478–83

    Article  PubMed  Google Scholar 

  35. Hussain NS, Piper M, Ludlam WG, et al (2013) Delayed postoperative hyponatremia after transsphenoidal surgery: prevalence and associated factors. J Neurosurg 119:1453–60

    Article  PubMed  Google Scholar 

  36. Abla AA, Wait SD, Forbes JA, et al (2011) Syndrome of alternating hypernatremia and hyponatremia after hypothalamic hamartoma surgery. Neurosurg Focus 30:E6

    Article  PubMed  Google Scholar 

  37. Williams CN, Riva-Cambrin J, Presson AP, et al (2015) Hyponatremia and poor cognitive outcome following pediatric brain tumor surgery. J Neurosurg Pediatr 15:480–7

    Article  PubMed  Google Scholar 

  38. Sterns RH, Hix JK, Silver S (2010) Treating profound hyponatremia: a strategy for controlled correction. Am J Kidney Dis 56:774–9

    Article  CAS  PubMed  Google Scholar 

  39. Verbalis JG, Goldsmith SR, Greenberg A, et al (2007) Hyponatremia treatment guidelines 2007: expert panel recommendations. Am J Med 120:S1–S21

    Article  CAS  PubMed  Google Scholar 

  40. Diringer MN (2013) New trends in hyperosmolar therapy? Curr Opin Crit Care 19:77–82

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rabinstein AA, Bruder N (2011) Management of hyponatremia and volume contraction. Neurocrit Care 15:354–60

    Article  PubMed  Google Scholar 

  42. Thongrong C, Kong N, Govindarajan B, et al (2014) Current purpose and practice of hypertonic saline in neurosurgery: a review of the literature. World Neurosurg 82:1307–18

    Article  PubMed  Google Scholar 

  43. Fink ME (2012) Osmotherapy for intracranial hypertension: mannitol versus hypertonic saline. Continuum (Minneap Minn) 18:640–54

    Google Scholar 

  44. Froelich M, Ni Q, Wess C, et al (2009) Continuous hypertonic saline therapy and the occurrence of complications in neurocritically ill patients. Crit Care Med 37:1433–41

    Article  CAS  PubMed  Google Scholar 

  45. Sood L, Sterns RH, Hix JK, et al (2013) Hypertonic saline and desmopressin: a simple strategy for safe correction of severe hyponatremia. Am J Kidney Dis 61:571–8

    Article  CAS  PubMed  Google Scholar 

  46. Ichai C, Payen JF, Orban JC, et al (2013) Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med 39:1413–22

    Article  CAS  PubMed  Google Scholar 

  47. Elliott MB, Jallo JJ, Gaughan JP, et al (2007) Effects of crystalloid-colloid solutions on traumatic brain injury. J Neurotrauma 24:195–202

    Article  PubMed  Google Scholar 

  48. Van Aken HK, Kampmeier TG, Ertmer C, et al (2012) Fluid resuscitation in patients with traumatic brain injury: what is a SAFE approach? Curr Opin Anaesthesiol 25:563–5

    Article  CAS  PubMed  Google Scholar 

  49. Cooper DJ, Myburgh J, Heritier S, et al (2013) Albumin resuscitation for traumatic brain injury: is intracranial hypertension the cause of increased mortality? J Neurotrauma 30:512–8

    Article  PubMed  PubMed Central  Google Scholar 

  50. Taplin CE, Cowell CT, Silink M, et al (2006) Fludrocortisone therapy in cerebral salt wasting. Pediatrics 118:e1904–e8

    Article  PubMed  Google Scholar 

  51. Feigin VL, Anderson N, Rinkel GJ, et al (2005) Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database Syst Rev: CD004583

  52. Bederson JB, Connolly ES, Batjer HH, et al (2009) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 40:994–1025

    Article  PubMed  Google Scholar 

  53. Diringer MN, Bleck TP, Claude Hemphill J, et al (2011) Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care 15:211–40

    Article  PubMed  Google Scholar 

  54. Nakagawa I, Hironaka Y, Nishimura F, et al (2013) Early inhibition of natriuresis suppresses symptomatic cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. Cerebrovasc Dis 35:131–7

    Article  PubMed  Google Scholar 

  55. Moro N, Katayama Y, Kojima J, et al (2003) Prophylactic management of excessive natriuresis with hydrocortisone for efficient hypervolemic therapy after subarachnoid hemorrhage. Stroke 34:2807–11

    Article  CAS  PubMed  Google Scholar 

  56. Katayama Y, Haraoka J, Hirabayashi H, et al (2007) A randomized controlled trial of hydrocortisone against hyponatremia in patients with aneurysmal subarachnoid hemorrhage. Stroke 38:2373–5

    Article  CAS  PubMed  Google Scholar 

  57. Aditya S, Rattan A (2012) Vaptans: a new option in the management of hyponatremia. Int J Appl Basic Med Res 2:77–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friedman B, Cirulli J (2013) Hyponatremia in critical care patients: frequency, outcome, characteristics, and treatment with the vasopressin V2-receptor antagonist tolvaptan. J Crit Care 28:219 e211–e2

    Article  CAS  Google Scholar 

  59. Verbalis JG, Adler S, Schrier RW, et al (2011) Efficacy and safety of oral tolvaptan therapy in patients with the syndrome of inappropriate antidiuretic hormone secretion. Eur J Endocrinol 164:725–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Louis G, Megarbane B, Lavoue S, et al (2012) Long-term outcome of patients hospitalized in intensive care units with central or extrapontine myelinolysis*. Crit Care Med 40:970–2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Langlois.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langlois, P.L., Bourguignon, M.J. & Manzanares, W. L’hyponatrémie chez le patient cérébrolésé en soins intensifs : étiologie et prise en charge. Méd. Intensive Réa 25 (Suppl 5), 203–213 (2016). https://doi.org/10.1007/s13546-016-1187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-016-1187-2

Mots clés

Keywords

Navigation