Skip to main content
Log in

Solutés balancés en réanimation

Crystalloid fluids in intensive care unit

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

Les solutés cristalloïdes représentent souvent la première étape thérapeutique de la prise en charge des états de choc hypovolémique vrai ou relatif. Cependant, leur administration expose à des effets secondaires. L’administration de sérum salé à 0,9 % présente une charge chlorée potentiellement pourvoyeuse d’une acidose hyperchlorémique, dont l’impact clinique reste peu exploré, mais qui pourrait être responsable de défaillances d’organes, principalement rénales et plaquettaires, augmenterait l’inflammation et ainsi potentiellement la morbimortalité. Les solutés balancés présentent une charge chlorée réduite, grâce à l’adjonction d’un anion organique (malate, acétate, lactate…), permettant, selon le principe physicochimique de Stewart, de limiter la survenue d’une acidose hyperchlorémique.

Abstract

Crystalloid fluids are often used to treat patients in the early stages of shock with true or relative hypovolemia. Nevertheless, their infusion could be associated with side effects. Indeed, 0.9% saline includes a high concentration of chloride ion sometimes responsible for hyperchloremic acidosis. Its clinical impact is uncertain but could be responsible for organ dysfunction, mainly renal and coagulopathy, could induce a rise in inflammatory process and thus could worsen morbidity and mortality. The addition of an organic anion in balanced solutions allows a reduced chloride concentration which, according to Stewart theory, limits the occurrence of hyperchloremic acidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Dellinger RP, Levy MM, Rhodes A, et al (2012) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock]. Intensive Care Med 39:39–165

    Google Scholar 

  2. Perel P, Roberts I, Ker K (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 2:CD000567

    PubMed  Google Scholar 

  3. Raghunathan K, Bonavia A, Nathanson BH, et al (2015) Association between Initial Fluid Choice and Subsequent In-hospital Mortality during the Resuscitation of Adults with Septic Shock. Anesthesiology 2015; in press

    Google Scholar 

  4. Annane D, Siami S, Jaber S, et al (2013) Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial]. JAMA 310:310–1809

    Article  Google Scholar 

  5. Myburgh JA, Mythen MG (2013) Resuscitation fluids]. N Engl J Med 369:369–1243

    Article  Google Scholar 

  6. Starling EH (1896) On the absorption of fluids from the connective tissue spaces]. J Physiol 19:19–312

    Article  Google Scholar 

  7. Lira A, Pinsky MR (2014) Choices in fluid type and volume during resuscitation: impact on patient outcomes]. Ann Intensive Care 4:4

    Article  Google Scholar 

  8. Rehm M, Bruegger D, Christ F, et al (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia]. Circulation 116:116–1896

    Article  Google Scholar 

  9. Steppan J, Hofer S, Funke B, et al (2011) Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix]. J Surg Res 165:165–136

    Article  Google Scholar 

  10. Chappell D, Jacob M (2014) Role of the glycocalyx in fluid management: small things matter]. Best Pract Res Clin Anaesthesiol 28:28–227

    Article  Google Scholar 

  11. Dejana E, Orsenigo F, Lampugnani MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability]. J Cell Sci 121:121–2115

    Article  Google Scholar 

  12. Kolárová H, Ambruzová B, Svihálková Šindlerová L, et al (2014) Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm 694312

    Google Scholar 

  13. You J-W, Lee SJ, Kim YE, et al (2013) Association between weight change and clinical outcomes in critically ill patients]. J Crit Care 28:28–923

    Article  CAS  Google Scholar 

  14. Silva JM, de Oliveira AMRR, Nogueira FAM, et al (2013) The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit Care 17:R288

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vaara ST, Korhonen AM, Kaukonen KM, et al (2012) Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit Care 16:R197

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rehm M, Zahler S, Lötsch M, et al (2004) Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed]. Anesthesiology 100:100–1211

    Article  Google Scholar 

  17. Woodcock TE, Woodcock TM (2012) Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy]. Br J Anaesth 108:108–384

    Article  Google Scholar 

  18. Stewart PA (1983) Modern quantitative acid-base chemistry]. Can J Physiol Pharmacol 61:61–1444

    Article  Google Scholar 

  19. Constable PD (2003) Hyperchloremic acidosis: the classic example of strong ion acidosis]. Anesth Analg 96:96–919

    Google Scholar 

  20. Corey HE (2004) Bench-to-bedside review: Fundamental principles of acid-base physiology]. Crit Care 9:9–184

    Article  Google Scholar 

  21. Morgan TJ, Venkatesh B (2003) Designing “balanced” crystalloids]. Crit Care Resusc 5:5–284

    Google Scholar 

  22. Zornow MH, Prough DS (1995) Fluid management in patients with traumatic brain injury]. New Horiz 3:3–488

    Google Scholar 

  23. Drobin D, Hahn RG (1990) Volume kinetics of Ringer’s solution in hypovolemic volunteers]. Anesthesiology 90:90–81

    Google Scholar 

  24. Williams EL, Hildebrand KL, McCormick SA, Bedel MJ (1999) The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers]. Anesth Analg 88:88–999

    Article  Google Scholar 

  25. Takil A, Eti Z, Irmak P, Yilmaz Gögüs F (2002) Early postoperative respiratory acidosis after large intravascular volume infusion of lactated ringer’s solution during major spine surgery]. Anesth Analg 95:95–294

    Google Scholar 

  26. O’Malley CMN, Frumento RJ, Hardy MA, et al (2005) A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg 100: 100–1518

    Article  Google Scholar 

  27. Didwania A, Miller J, Kassel D, et al (1997) Effect of intravenous lactated Ringer’s solution infusion on the circulating lactate concentration: Part 3. Results of a prospective, randomized, double-blind, placebo-controlled trial]. Crit Care Med 25:25–1851

    Article  Google Scholar 

  28. Hadimioglu N, Saadawy I, Saglam T, et al (2008) The effect of different crystalloid solutions on acid-base balance and early kidney function after kidney transplantation]. Anesth Analg 107:107–264

    Article  Google Scholar 

  29. Orbegozo-Cortés D, Rayo Bonor A, Vincent JL (2014) Isotonic crystalloid solutions: a structured review of the literature]. Br J Anaesth 112:112–968

    Google Scholar 

  30. Vincent JL, Vanherweghem JL, Degaute JP, et al (1982) Acetateinduced myocardial depression during hemodialysis for acute renal failure]. Kidney Int 22:22–653

    Article  Google Scholar 

  31. Weinberg L, Pearce B, Sullivan R, et al (2014) The effects of plasmalyte-148 versus hartmann’s solution during major liver resection: a multicentre, double-blind, randomized controlled trial]. Minerva Anestesiol 81:81-97

    Google Scholar 

  32. Petraitiene R, Petraitis V, Witt JR, et al (2011) Galactomannan antigenemia after infusion of gluconate-containing Plasma-Lyte®]. J Clin Microbiol 49:49–4330

    Article  Google Scholar 

  33. Yunos NM, Bellomo R, Hegarty C, et al (2012) Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults]. JAMA 308:308–1566

    Article  Google Scholar 

  34. Young P, Bailey M, Beasley R, et al (2015) Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial]. JAMA 314:314–1701

    Article  Google Scholar 

  35. Wilcox CS, Mitch WE, Kelly RA, et al (1983) Response of the kidney to furosemide. I. Effects of salt intake and renal compensation]. J Lab Clin Med 102:102–450

    Google Scholar 

  36. Schnermann J, Ploth DW, Hermle M (1976) Activation of tubuloglomerular feedback by chloride transport]. Pflugers Arch 362: 362–229

    Article  Google Scholar 

  37. Hashimoto S, Kawata T, Schnermann J, Koike T (2004) Chloride channel blockade attenuates the effect of angiotensin II on tubuloglomerular feedback in WKY but not spontaneously hypertensive rats]. Kidney Blood Press Res 27:27–35

    Article  Google Scholar 

  38. Chowdhury AH, Cox EF, Francis ST, et al (2012) A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 256:256–18

  39. Shaw AD, Bagshaw SM, Goldstein SL, et al (2012) Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte®]. Ann Surg 255:255–821

    Article  Google Scholar 

  40. Scheingraber S, Rehm M, Sehmisch C, Finsterer U (1990) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery]. Anesthesiology 90:90–1265

    Google Scholar 

  41. Cho YS, Lim H, Kim SH (2007) Comparison of lactated Ringer’s solution and 0.9% saline in the treatment of rhabdomyolysis induced by doxylamine intoxication]. Emerg Med J 24:24–276

    Article  Google Scholar 

  42. Mahler SA, Conrad SA, Wang H, Arnold TC (2011) Resuscitation with balanced electrolyte solution prevents hyperchloremic metabolic acidosis in patients with diabetic ketoacidosis Am J Emerg Med 29:29–670

  43. Van Zyl DG, Rheeder P, Delport E (2012) Fluid management in diabetic-acidosis–Ringer’s lactate versus normal saline: a randomized controlled trial]. QJM 105:105–337

    Article  Google Scholar 

  44. Kellum JA (2002) Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acidbase balance with Hextend compared with saline]. Crit Care Med 30:30–300

    Google Scholar 

  45. Kellum JA, Song M, Almasri E (2006) Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis]. Chest 130:130–962

    Article  Google Scholar 

  46. Kellum JA, Song M, Venkataraman R (2004) Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis]. Chest 125:125–243

    Article  Google Scholar 

  47. Shaw AD, Schermer CR, Lobo DN, et al (2015) Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome]. Crit Care 19:19

    Article  Google Scholar 

  48. Chioléro R, Tappy L, Gillet M, et al (1999) Effect of major hepatectomy on glucose and lactate metabolism]. Ann Surg 229:229–505

    Article  Google Scholar 

  49. Waters JH, Gottlieb A, Schoenwald P, et al (2001) Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study]. Anesth Analg 93:93–817

    Google Scholar 

  50. Wu BU, Hwang JQ, Gardner TH, et al (2011) Lactated Ringer’s solution reduces systemic inflammation compared with saline in patients with acute pancreatitis]. Clin Gastroenterol Hepatol 9:9–710

    Article  Google Scholar 

  51. Kellum JA, Song M, Li J (2004) Lactic and hydrochloric acids induce different patterns of inflammatory response in LPSstimulated RAW 264.7 cells]. Am J Physiol Regul Integr Comp Physiol 286:R686–92

  52. Raghunathan K, Shaw A, Nathanson B, et al (2014) Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis]. Crit Care Med 42:42–1585

    Article  Google Scholar 

  53. Shaw AD, Schermer CR, Lobo DN, et al (2015) Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome]. Crit Care 19:19

    Article  Google Scholar 

  54. McCluskey SA, Karkouti K, Wijeysundera D, et al (2013) Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study]. Anesth Analg 117:117–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Besnier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besnier, E., Grange, S. & Tamion, F. Solutés balancés en réanimation. Réanimation 25, 212–220 (2016). https://doi.org/10.1007/s13546-016-1171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-016-1171-x

Mots clés

Keywords

Navigation