Skip to main content
Log in

Insuffisances rénales aiguës : pertinence d’une classification fondée sur le délai de récupération

Acute renal failure: Accuracy of a classification based on time to recovery

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

L’insuffisance rénale aiguë (IRA) est classiquement décrite selon le mécanisme physiopathologique estimé de l’atteinte rénale. Cette classification permet de proposer un algorithme décisionnel simple et pratique qui, après avoir éliminé une cause obstructive, fait la distinction entre atteintes fonctionnelles, liées à une hypoperfusion rénale, et atteintes organiques, liées à une atteinte parenchymateuse. Cette classification théorique est actuellement remise en cause, notamment en raison de l’intrication de plusieurs mécanismes et d’un continuum entre ces derniers. Une classification fondée sur la réversibilité à court terme pourrait permettre une approche clinique et expérimentale simple, avec des débouchés cliniques immédiats. Dans cette revue, nous évaluerons les motifs de la remise en cause de la dichotomie classique « IRA fonctionnelle »/« IRA organique » ainsi que les arguments soutenant une définition fondée sur le délai avant récupération.

Abstract

Among the suspected mechanisms of acute kidney injury (AKI), pre-renal AKI has long been differentiated from other subtypes of AKI, such as acute tubular necrosis (ATN). This distinction has been challenged by several recent studies. Thus, recent studies reported typical histopathological findings of ATN to be fairly uncommon in both experimental and human studies and its features to be patchy patchy. The classic pre-renal/intrinsic paradigm has been revisited and AKI are now mainly separated according to shortterm reversibility of AKI. In this article, we will review the findings supporting such change and the potential interest for research purposes or at bedside in reporting AKI according to short-term reversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Schrier RW, Wang W, Poole B, Mitra A (2004) Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114:5–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–30

    Article  CAS  PubMed  Google Scholar 

  3. Kellum JA, Lameire N, for the KDIGO AKI Guideline Work Group (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care Lond Engl 17:204

    Article  Google Scholar 

  4. Schetz M, Darmon M (2015) Measuring acute kidney injury around the world: are we using the right thermometer (and adequately)? Intensive Care Med; doi:10.1007/s00134-015-3972-1

    Google Scholar 

  5. Fliser D, Laville M, et al (2012) A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrastinduced nephropathy. Nephrol Dial Transplant 27:4263–72

    Article  PubMed Central  PubMed  Google Scholar 

  6. Clec’h C, Gonzalez F, Lautrette A, et al (2011) Multiple-center evaluation of mortality associated with acute kidney injury in critically ill patients: a competing risks analysis. Crit Care 15:R128

    Article  PubMed Central  PubMed  Google Scholar 

  7. Thakar CV, Christianson A, Freyberg R, et al (2009) Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit Care Med 37:2552–8

    Article  PubMed  Google Scholar 

  8. Ostermann M, Chang R, Riyadh ICU (2008) Program Users Group. Correlation between the AKI classification and outcome. Crit Care 12:R144

    Article  PubMed Central  PubMed  Google Scholar 

  9. Bagshaw SM, George C, Bellomo R (2008) ANZICS Database Management Committee. A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients. Nephrol Dial Transplant 23:1569–74

    Article  PubMed  Google Scholar 

  10. Joannidis M, Metnitz B, Bauer P, et al (2009) Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 35:1692–702

    Article  PubMed  Google Scholar 

  11. Wlodzimirow KA, Abu-Hanna A, Slabbekoorn M, et al (2012) A comparison of RIFLE with and without urine output criteria for acute kidney injury in critically ill patients. Crit Care Lond Engl 16:R200

    Article  Google Scholar 

  12. Srisawat N, Sileanu FE, Murugan R, et al (2015) Variation in risk and mortality of acute kidney injury in critically ill patients: a multicenter study. Am J Nephrol 41:81–8

    Article  CAS  PubMed  Google Scholar 

  13. Prowle JR, Liu YL, Licari E, et al (2011) Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care Lond Engl 15:R172

    Article  Google Scholar 

  14. Legrand M, Jacquemod A, Gayat E, et al (2015) Failure of renal biomarkers to predict worsening renal function in high-risk patients presenting with oliguria. Intensive Care Med 41:68–76

    Article  CAS  PubMed  Google Scholar 

  15. Siew ED, Matheny ME, Ikizler TA, et al (2010) Commonly used surrogates for baseline renal function can impact acute kidney injury classification and prognosis. Kidney Int 77:536–42

    Article  PubMed Central  PubMed  Google Scholar 

  16. Schetz M, Gunst J, Van den Berghe G (2014) The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU. Intensive Care Med 40:1709–17

    Article  CAS  PubMed  Google Scholar 

  17. Bagshaw SM, Uchino S, Cruz D, et al (2009) Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. Nephrol Dial Transplant 24:2739–44

    Article  CAS  PubMed  Google Scholar 

  18. Závada J, Hoste E, Cartin-Ceba R, et al (2010) A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transplant 25:3911–8

    Article  PubMed  Google Scholar 

  19. Solomon AW, Kirwan CJ, Alexander NDE, et al (2010) Prospective Analysis of Renal Compensation for Hypohydration in Exhausted Doctors (PARCHED) Investigators. Urine output on an intensive care unit: case-control study. BMJ 341:c6761

    PubMed  Google Scholar 

  20. Waikar SS, Bonventre JV (2009) Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 20:672–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Reineck HJ, O’Connor GJ, Lifschitz MD, Stein JH (1980) Sequential studies on the pathophysiology of glycerol-induced acute renal failure. J Lab Clin Med 96:356–62

    CAS  PubMed  Google Scholar 

  22. Bywaters EG, Beall D (1998) Crush injuries with impairment of renal function. 1941. J Am Soc Nephrol 9:322–32

    CAS  PubMed  Google Scholar 

  23. Dible JH, Bull GM, Darmady EM (1950) Acute tubular necrosis. Br Med J 1:1262–4

    CAS  PubMed  Google Scholar 

  24. Langenberg C, Bagshaw SM, May CN, Bellomo R (2008) The histopathology of septic acute kidney injury: a systematic review. Crit Care Lond Engl 12:R38

    Article  Google Scholar 

  25. Philipponnet C, Guérin C, Canet E, et al (2013) Kidney biopsy in the critically ill patient, results of a multicentre retrospective case series. Minerva Anestesiol 79:53–61

    CAS  PubMed  Google Scholar 

  26. Augusto JF, Lassalle V, Fillatre P, et al (2012) Safety and diagnostic yield of renal biopsy in the intensive care unit. Intensive Care Med 38:1826–33

    Article  PubMed  Google Scholar 

  27. Lerolle N, Nochy D, Guérot E, et al (2010) Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med 36:471–8

    Article  PubMed  Google Scholar 

  28. Takasu O, Gaut JP, Watanabe E, et al (2013) Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med 187:509–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Langenberg C, Gobe G, Hood S, et al (2014) Renal histopathology during experimental septic acute kidney injury and recovery. Crit Care Med 42:e58–67

    Article  CAS  PubMed  Google Scholar 

  30. Miller TR, Anderson RJ, Linas SL, et al (1978) Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med 89:47–50

    Article  CAS  PubMed  Google Scholar 

  31. Espinel CH (1976) The FENa test. Use in the differential diagnosis of acute renal failure. JAMA 236:579–81

    Article  CAS  PubMed  Google Scholar 

  32. Carvounis CP, Nisar S, Guro-Razuman S (2002) Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int 62:2223–9

    Article  CAS  PubMed  Google Scholar 

  33. Perinel S, Vincent F, Lautrette A, et al (2015) Transient and persistent acute kidney injury and the risk of hospital mortality in critically ill patients: results of a multicenter cohort study. Crit Care Med 43:e269–e75

    Article  PubMed  Google Scholar 

  34. Darmon M, Vincent F, Dellamonica J, et al (2011) Diagnostic performance of fractional excretion of urea in the evaluation of critically ill patients with acute kidney injury: a multicenter cohort study. Crit Care Lond Engl 15:R178

    Article  Google Scholar 

  35. Pons B, Lautrette A, Oziel J, et al (2013) Diagnostic accuracy of early urinary index changes in differentiating transient from persistent acute kidney injury in critically ill patients: multicenter cohort study. Crit Care Lond Engl 17:R56

    Article  Google Scholar 

  36. Dewitte A, Biais M, Petit L, et al (2012) Fractional excretion of urea as a diagnostic index in acute kidney injury in intensive care patients. J Crit Care 27:505–10

    Article  PubMed  Google Scholar 

  37. Vanmassenhove J, Glorieux G, Hoste E, et al (2013) Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Crit Care Lond Engl 17:R234

    Article  Google Scholar 

  38. Vaidya VS, Ozer JS, Dieterle F, et al (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 28:478–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Nejat M, Pickering JW, Devarajan P, et al (2012) Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int doi:10.1038/ki.2012.23

    Google Scholar 

  40. Molitoris BA (2014) Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest 124:2355–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Uchino S, Bellomo R, Bagshaw SM, Goldsmith D (2010) Transient azotaemia is associated with a high risk of death in hospitalized patients. Nephrol Dial Transplant 25:1833–9

    Article  PubMed  Google Scholar 

  42. Waikar SS, Betensky RA, Emerson SC, Bonventre JV (2012) Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol 23:13–21

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Gaudry S, Ricard JD, Leclaire C, et al (2014) Acute kidney injury in critical care: Experience of a conservative strategy. J Crit Care 29:1022–7

    Article  PubMed  Google Scholar 

  44. Vaara ST, Reinikainen M, Wald R, et al (2014) Timing of RRT Based on the Presence of Conventional Indications. Clin J Am Soc Nephrol 9:1577–85

    Article  PubMed Central  PubMed  Google Scholar 

  45. Karvellas CJ, Farhat MR, Sajjad I, et al (2011) A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care Lond Engl 15:R72

    Article  Google Scholar 

  46. Bellomo R, Bagshaw S, Langenberg C, Ronco C (2007) Prerenal azotemia: a flawed paradigm in critically ill septic patients? Contrib Nephrol 156:1–9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Darmon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perinel, S., Darmon, M. Insuffisances rénales aiguës : pertinence d’une classification fondée sur le délai de récupération. Réanimation 24, 648–653 (2015). https://doi.org/10.1007/s13546-015-1112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-015-1112-4

Mots clés

Keywords

Navigation