Skip to main content
Log in

Syndrome hémolytique et urémique atypique : pour qui l’éculizumab ?

Atypical hemolytic and uremic syndrome: Which patient to treat with eculizumab?

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

Le syndrome hémolytique et urémique (SHU) est défini par la triade anémie hémolytique mécanique intravasculaire, thrombopénie et insuffisance rénale aiguë. La plupart des SHU non liés à une infection par Escherichia coli produisant une shigatoxine se présentent comme une maladie primitive appelée SHU atypique, en rapport le plus souvent avec une dérégulation du système du complément. Avant l’ère du traitement spécifique, le pronostic était sévère puisque 2 à 10 % des patients décédaient au cours de la première poussée et qu’un tiers évoluait vers l’insuffisance rénale terminale. La compréhension du rôle du complément a ouvert la voie à une nouvelle thérapeutique, l’éculizumab, une immunoglobuline G recombinante monoclonale humanisée anti-C5 qui bloque le clivage du C5. Il a prouvé son efficacité avec 85 % de réponse, que les patients soient plasmarésistants ou plasmadépendants. Il permet un meilleur contrôle de la maladie rénale que la plasmathérapie. L’éculizumab est désormais recommandé en première intention chez l’enfant et dès que les principales causes secondaires de SHU ont été éliminées chez l’adulte. Dans tous les cas, l’utilisation de l’éculizumab est recommandée en cas de résistance à trois à cinq échanges plasmatiques quotidiens. La normalisation du chiffre de plaquettes ne doit pas être le seul critère de jugement de l’efficacité de la plasmathérapie. Elle doit être considérée comme inefficace s’il persiste une thrombopénie, mais aussi si la créatininémie ne diminue pas et/ou si des stigmates d’hémolyse persistent.

Abstract

Hemolytic and uremic syndrome (HUS) is defined by mechanical intravascular hemolytic anemia, thrombocytopenia and acute renal failure. Most HUS, which are not due to shigatoxin-producing Escherichia Coli, present as primary disease called atypical HUS which is due to abnormal control of complement activation. Before the era of specific treatment, prognosis was severe since 2 to 10% of patients died during the first year and one third progressed to end-stage renal disease. Understanding the role of complement lead to a new therapeutic approach based on eculizumab, a recombinant, humanized, monoclonal anti-C5 immunoglobulin G which blocks C5 cleavage. Eculizumab has proven its efficiency with 85% of success in both plasma-resistant and dependent patients, allowing a better control of the disease than plasma therapy when considering renal function. Eculizumab is recommended to date as first-line treatment in children and as soon as the main secondary HUS causes have been ruled out in adults. Eculizumab should be systematically considered in case of resistance to 3–5 daily plasma exchanges, defined by persistent thrombocytopenia but also ongoing hemolysis or lack of improvement in renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Loirat C, Saland J, Bitzan M (2012) Management of hemolytic uremic syndrome. Press Med 41(3 Pt 2):e115–35

    Article  Google Scholar 

  2. Kavanagh D, Goodship TH, Richards A (2013) Atypical hemolytic uremic syndrome. Seminars in nephrology 33:508–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Besbas N, Karpman D, Landau D, et al (2006) A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura and related disorders. Kid Int 70:423–31

    CAS  Google Scholar 

  4. Fremeaux-Bacchi V, Fakhouri F, Garnier A, et al (2013) Genetics and outcome of atypical hemolytic uremic syndrome: a nationwide French series comparing children and adults. Clin J Am Soc Nephrol 8:554–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Sellier-Leclerc AL, Fremeaux-Bacchi V, Dragon-Durey MA, et al (2007) Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J Am Soc Nephrol 18:2392–400

    Article  CAS  PubMed  Google Scholar 

  6. Warwicker P, Goodship TH, Donne RL, et al (1998) Genetic studies into inherited and sporadic hemolytic uremic syndrome. Kid Inte 53:836–44

    Article  CAS  Google Scholar 

  7. Caprioli J, Bettinaglio P, Zipfel PF, et al (2001) The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. J Am Soc Nephrol 12:297–307

    CAS  PubMed  Google Scholar 

  8. Perez-Caballero D, Gonzalez-Rubio C, Gallardo ME, et al (2001) Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am J Hum Genet 68:478–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dragon-Durey MA, Fremeaux-Bacchi V, Loirat C, et al (2004) Heterozygous and homozygous factor h deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. J Am Soc Nephrol 15:787–95

    Article  CAS  PubMed  Google Scholar 

  10. Maga TK, Nishimura CJ, Weaver AE, et al (2010) Mutations in alternative pathway complement proteins in American patients with atypical hemolytic uremic syndrome. Hum Mut 31:e1445–60

    Article  Google Scholar 

  11. Fremeaux-Bacchi V, Dragon-Durey MA, Blouin J, et al (2004) Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J Med Genet 41:e84

    Article  Google Scholar 

  12. Kavanagh D, Kemp EJ, Mayland E, et al (2005) Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J Am Soc Nephrol 16:2150–5

    Article  CAS  PubMed  Google Scholar 

  13. Kavanagh D, Richards A, Noris M, et al (2008) Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. Mol Immunol 45:95–105

    Article  CAS  PubMed  Google Scholar 

  14. Caprioli J, Noris M, Brioschi S, et al (2006) Genetics of HUS: the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108:1267–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Westra D, Volokhina E, van der Heijden E, et al (2010) Genetic disorders in complement (regulating) genes in patients with atypical haemolytic uraemic syndrome (aHUS). Nephrol Dial Transplant 25:2195–202

    Article  CAS  PubMed  Google Scholar 

  16. Nilsson SC, Kalchishkova N, Trouw LA, et al (2010) Mutations in complement factor I as found in atypical hemolytic uremic syndrome lead to either altered secretion or altered function of factor I. Eur J Immunol 40:172–85

    Article  CAS  PubMed  Google Scholar 

  17. Richards A, Kemp EJ, Liszewski MK, et al (2003) Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc Natl Acad Sci U S A 100:12966–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bresin E, Rurali E, Caprioli J, et al (2013) Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J Am Soc Nephrol 24:475–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Fremeaux-Bacchi V, Moulton EA, Kavanagh D, et al (2006) Genetic and functional analyses of membrane cofactor protein (CD46) mutations in atypical hemolytic uremic syndrome. J Am Soc Nephrol 17:2017–25

    Article  CAS  PubMed  Google Scholar 

  20. Fremeaux-Bacchi V, Miller EC, Liszewski MK, et al (2008) Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112:4948–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, et al (2007) Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A 104:240–5

    Article  Google Scholar 

  22. Delvaeye M, Noris M, De Vriese A, et al (2009) Thrombomodulin mutations in atypical hemolytic-uremic syndrome. Engl J Med 361:345–57

    Article  CAS  Google Scholar 

  23. Dragon-Durey MA, Blanc C, Garnier A, et al (2010) Anti-factor H autoantibody-associated hemolytic uremic syndrome: review of literature of the autoimmune form of HUS. Semin Thromb Hemost 36:633–40

    Article  CAS  PubMed  Google Scholar 

  24. Dragon-Durey MA, Blanc C, Marliot F, et al (2009) The high frequency of complement factor H related CFHR1 gene deletion is restricted to specific subgroups of patients with atypical haemolytic uraemic syndrome. J Med Genet 46:447–50

    Article  CAS  PubMed  Google Scholar 

  25. Moore I, Strain L, Pappworth I, et al (2010) Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood 115:379–87

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kavanagh D, Pappworth IY, Anderson H, et al (2012) Factor I autoantibodies in patients with atypical hemolytic uremic syndrome: disease-associated or an epiphenomenon? Clin J Am Soc Nephrol 7:417–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zipfel PF, Edey M, Heinen S, et al (2007) Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS genetics 3:e41

    Article  Google Scholar 

  28. Pickering MC, de Jorge EG, Martinez-Barricarte R, et al (2007) Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. The J Exp Med 204:1249–56

    Article  CAS  Google Scholar 

  29. Abarrategui-Garrido C, Martinez-Barricarte R, Lopez-Trascasa M, et al (2009) Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood 114:4261–71

    Article  CAS  PubMed  Google Scholar 

  30. Ermini L, Goodship TH, Strain L, et al (2012) Common genetic variants in complement genes other than CFH, CD46 and the CFHRs are not associated with aHUS. Mol Immunol 49:640–8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Esparza-Gordillo J, Goicoechea de Jorge E, Buil A, et al (2005) Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32. Hum Mol Genet 14:703–12

    Article  CAS  PubMed  Google Scholar 

  32. Fremeaux-Bacchi V, Kemp EJ, Goodship JA, et al (2005) The development of atypical haemolytic-uraemic syndrome is influenced by susceptibility factors in factor H and membrane cofactor protein: evidence from two independent cohorts. J Med Genet 42:852–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Caprioli J, Castelletti F, Bucchioni S, et al (2003) Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum Mol Genet 12:3385–95

    Article  CAS  PubMed  Google Scholar 

  34. Blom AM, Bergstrom F, Edey M, et al (2008) A novel nonsynonymous polymorphism (p.Arg240His) in C4b-binding protein is associated with atypical hemolytic uremic syndrome and leads to impaired alternative pathway cofactor activity. J Immunol 180:6385–91

    Article  CAS  PubMed  Google Scholar 

  35. Lemaire M, Fremeaux-Bacchi V, Schaefer F, et al (2013) Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nature Genet 45:531–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zuber J, Le Quintrec M, Sberro-Soussan R, et al (2011) New insights into postrenal transplant hemolytic uremic syndrome. Nat Rev Nephrol 7:23–35

    Article  PubMed  Google Scholar 

  37. Le Quintrec M, Zuber J, Moulin B, et al (2013) Complement genes strongly predict recurrence and graft outcome in adult renal transplant recipients with atypical hemolytic and uremic syndrome. Am J Transplant 13:663–75

    Article  PubMed  Google Scholar 

  38. Wilson C, Torpey N, Jaques B, et al (2011) Successful simultaneous liver-kidney transplant in an adult with atypical hemolytic uremic syndrome associated with a mutation in complement factor H. Am J Kidney Dis 58:109–12

    Article  PubMed  Google Scholar 

  39. Noris M, Caprioli J, Bresin E, et al (2010) Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin J Am Soc Nephrol 5:1844–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Edey MM, Mead PA, Saunders RE, et al (2008) Association of a factor H mutation with hemolytic uremic syndrome following a diarrheal illness. Am J Kidney Dis 51:487–90

    Article  CAS  PubMed  Google Scholar 

  41. Fakhouri F, Roumenina L, Provot F, et al (2010) Pregnancyassociated hemolytic uremic syndrome revisited in the era of complement gene mutations. J Am Soc Nephrol 21:859–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Goodship TH, Kavanagh D (2010) Pulling the trigger in atypical hemolytic uremic syndrome: the role of pregnancy. J Am Soc Nephrol 21:731–2

    Article  PubMed  Google Scholar 

  43. Taylor CM, Machin S, Wigmore SJ, et al (2010) Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol 148:37–47

    Article  CAS  PubMed  Google Scholar 

  44. Fakhouri F, Jablonski M, Lepercq J, et al (2008) Factor H, membrane cofactor protein, and factor I mutations in patients with hemolysis, elevated liver enzymes, and low platelet count syndrome. Blood 112:4542–5

    Article  CAS  PubMed  Google Scholar 

  45. Le Quintrec M, Lionet A, Kamar N, et al (2008) Complement mutation-associated de novo thrombotic microangiopathy following kidney transplantation. Am J Transplant 8:1694–701

    Article  PubMed  Google Scholar 

  46. Loirat C, Garnier A, Sellier-Leclerc AL, et al (2010) Plasmatherapy in atypical hemolytic uremic syndrome. Semin Thromb Hemost 36:673–81

    Article  PubMed  Google Scholar 

  47. Nathanson S, Ulinski T, Fremeaux-Bacchi V, et al (2006) Secondary failure of plasma therapy in factor H deficiency. Pediatr Nephrol 21:1769–71

    Article  PubMed  Google Scholar 

  48. De S, Waters AM, Segal AO, et al (2010) Severe atypical HUS caused by CFH S1191L—case presentation and review of treatment options. Pediatr Nephrol 25:97–104

    Article  PubMed  Google Scholar 

  49. Michon B, Moghrabi A, Winikoff R, et al (2007) Complications of apheresis in children. Transfusion 47:1837–42

    Article  PubMed  Google Scholar 

  50. Witt V, Stegmayr B, Ptak J, et al (2008) World apheresis registry data from 2003 to 2007, the pediatric and adolescent side of the registry. Transfus Apher Sci 39:255–60

    Article  PubMed  Google Scholar 

  51. Gruppo RA, Rother RP (2009) Éculizumab for congenital atypical hemolytic-uremic syndrome. N Engl J Med 360:544–6

    Article  CAS  PubMed  Google Scholar 

  52. Ariceta G, Arrizabalaga B, Aguirre M, et al (2012) Eculizumab in the treatment of atypical hemolytic uremic syndrome in infants. Am J Kidney Dis 59:707–10

    Article  CAS  PubMed  Google Scholar 

  53. Dorresteijn EM, van de Kar NC, Cransberg K (2012) Éculizumab as rescue therapy for atypical hemolytic uremic syndrome with normal platelet count. Pediatr Nephrol 27:1193–5

    Article  PubMed Central  PubMed  Google Scholar 

  54. Lapeyraque AL, Fremeaux-Bacchi V, Robitaille P (2011) Efficacy of éculizumab in a patient with factor-H-associated atypical hemolytic uremic syndrome. Pediatr Nephrol 26:621–4

    Article  PubMed  Google Scholar 

  55. Ohanian M, Cable C, Halka K (2011) Reduced dose maintenance éculizumab in atypical hemolytic uremic syndrome (aHUS): an update on a previous case report. Clin Pharmacol 3:45–50

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Tschumi S, Gugger M, Bucher BS, et al (2011) Éculizumab in atypical hemolytic uremic syndrome: long-term clinical course and histological findings. Pediatr Nephrol 26:2085–8

    Article  PubMed  Google Scholar 

  57. Prescott HC, Wu HM, Cataland SR, et al (2010) Eculizumab therapy in an adult with plasma exchange-refractory atypical hemolytic uremic syndrome. Am J Haematol 85:976–7

    Article  Google Scholar 

  58. Legendre CM, Licht C, Muus P, et al (2013) Terminal complement inhibitor éculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 368:2169–81

    Article  CAS  PubMed  Google Scholar 

  59. Fakhouri F, Delmas Y, Provot F, et al (2014) Insights from the use in clinical practice of éculizumab in adult patients with atypical hemolytic uremic syndrome affecting the native kidneys: an analysis of 19 cases. Am J Kidney Dis 63:40–8

    Article  CAS  PubMed  Google Scholar 

  60. Wong EK, Goodship TH, Kavanagh D (2013) Complement therapy in atypical haemolytic uraemic syndrome (aHUS). Mol Immunol 56:199–212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ram S, Lewis LA, Rice PA (2010) Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 23:740–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Servais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Servais, A., Hummel, A. & Legendre, C. Syndrome hémolytique et urémique atypique : pour qui l’éculizumab ?. Réanimation 23, 645–652 (2014). https://doi.org/10.1007/s13546-014-0928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-0928-3

Mots clés

Keywords

Navigation