Skip to main content
Log in

Physiologie du couplage entre le ventricule droit et la circulation pulmonaire

Physiological coupling between the right ventricle and pulmonary circulation

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

Le ventricule droit (VD) et la circulation pulmonaire sont étroitement couplés. Le capillaire pulmonaire est ainsi protégé par la mise en jeu de différents mécanismes coordonnés : 1) maintien d’une pression artérielle pulmonaire basse au repos et à l’exercice grâce à la faible résistance et forte capacitance de la circulation pulmonaire ; 2) contraction péristaltique du VD et rôle du conus comme régulateur d’entrée de la circulation pulmonaire ; 3) rôle de chambre de capacitance du VD du fait de sa grande compliance ; et 4) limitation du débit de retour veineux systémique, donc du débit pulmonaire, par collapsus inspiratoire de la veine cave inférieure pour une pression auriculaire droite (Pod) nulle. Par sa compliance diastolique élevée, le VD a également un rôle majeur dans le maintien d’une Pod basse, la Pod étant la pression d’aval du retour veineux systémique. Postcharge, précharge, contractilité et fréquence cardiaque déterminent la performance systolique VD. Il faut y ajouter le rôle majeur de la respiration (pompe thoracique), des interactions ventriculaires en série, des interactions ventriculaires en parallèle (rôle du septum interventriculaire et du péricarde) et de l’intégrité de la valve tricuspide. La connaissance de la physiologie du couplage entre le VD et la circulation pulmonaire aide à mieux comprendre la physiopathologie des différentes maladies touchant le coeur droit et la circulation pulmonaire. Elle aide aussi à comprendre et prévenir certains des effets hémodynamiques délétères de la ventilation mécanique.

Abstract

The article summarizes the main characteristics of the physiological coupling between the right ventricle (RV) and the pulmonary circulation. This coupling enables protecting pulmonary capillaries based on various coordinated mechanisms including: 1) the maintenance of a low pulmonary artery pressure at rest and on exercise (low resistance/high capacitance of the pulmonary circulation); 2) the sequential contraction of the RV and the resistive function of the conus preventing the transmission of acute increases in pressure; 3) the capacitive function of the RV chamber due to its high compliance; and 4) the fact that cardiac output levels off because the vena cava collapses at 0 mmHg right atrial pressure (RAP) and below. The low RV compliance facilitates venous return by ensuring low RAP, i.e., the downstream pressure of systemic venous return. The RV systolic function is influenced by afterload (steady and pulsatile), preload, inotropy and heart rate. The RV systolic function is also influenced by respiration (thoracic pump), ventricular interdependence (involving the interventricular septum and pericardium), and tricuspid valve function. Impaired coupling between the RV and pulmonary circulation is involved in the pathophysiology of various diseases (especially pulmonary hypertension) leading to heart failure. The optimization of the coupling between patient’s respiratory status, volemic status and RV load helps limiting the deleterious hemodynamic consequences of mechanical ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Stephanazzi J, Guidon-Attali C, Escarment J (1997) Fonction ventriculaire droite: bases physiologiques et physiopathologiques. Ann Fr Anesth Reanim 16:165–86

    Article  CAS  PubMed  Google Scholar 

  2. Dell’Italia LJ, Santamore WP (1998) Can indices of left ventricular function be applied to the right ventricle. Progr Cardiovasc Dis 40:309–24

    Article  Google Scholar 

  3. Weber KT, Janicki JS, Shroff SG, et al (1983) The right ventricle: physiologic and pathophysiologic considerations. Crit Care Med 11:323–8

    Article  CAS  PubMed  Google Scholar 

  4. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ (2008) Right ventricular function in cardiovascular disease Part I. Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117:1436–48

    Article  PubMed  Google Scholar 

  5. Greyson CR (2010) The right ventricle and pulmonary circulation: basic concepts. Rev Esp Cardiol 63:81–95

    Article  Google Scholar 

  6. Maceira AM, Prasad SK, Khan M, Pennell DJ (2007) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27:2879–88

    Article  Google Scholar 

  7. Sanz J, Conroy J, Narula J (2012) Imaging the right ventricle. Cardiology Clinics 30:189–203

    Article  PubMed  Google Scholar 

  8. Creuzé N, Hoette S, Azarine A, Chemla D (2013) Imagerie par résonance magnétique cardiaque dans l’hypertension pulmonaire précapillaire. EMC-Pneumologie 10:1–7

    Google Scholar 

  9. Ernande L, Derumeaux G (2012) Exploration échocardiographique du coeur droit. In: Manuel d’échocardiographie clinique. Cohen A & Guéret P Eds, Lavoisier SAS 10:145–59

    Google Scholar 

  10. Selton-Suty C, Gallet B (2012) Calcul des pressions pulmonaires. In: Manuel d’échocardiographie clinique. Cohen A & Guéret P Eds, Lavoisier SAS 11:160–8

    Google Scholar 

  11. Rudski LG, Lai WW, Afilalo J, et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23:685–713

    Article  PubMed  Google Scholar 

  12. Grünig E, Henn P, D’Andrea A, et al (2013) Reference values for and determinants of right atrial area in healthy adults by 2-dimensional echocardiography. Circ Cardiovasc Imaging 6:117–24

    Article  PubMed  Google Scholar 

  13. Jardin F, Dubourg O, Bourdarias JP (1997) Echocardiographic pattern of acute cor pulmonale. Chest 111:209–17

    Article  CAS  PubMed  Google Scholar 

  14. Wang N, Hu X, Liu C, et al (2014) A systematic review of the diagnostic accuracy of cardiovascular magnetic resonance for pulmonary hypertension. Can J Cardiol 30:455–63

    Article  PubMed  Google Scholar 

  15. Ghio S, Pazzano AS, Klersy C, et al (2011) Clinical and prognostic relevance of echocardiographic evaluation of right ventricular geometry in patients with idiopathic pulmonary arterial hypertension. Am J Cardiol 107:628–32

    Article  PubMed  Google Scholar 

  16. Watts JA, Marchick MR, Kline JA (2010) Right ventricular heart failure from pulmonary embolism: key distinctions from chronic pulmonary hypertension. J Card Fail 16:250–9

    Article  PubMed  Google Scholar 

  17. Lowensohn HS, Khouri EM, Gregg DE, et al (1976) Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 39:760–6

    Article  CAS  PubMed  Google Scholar 

  18. Bombardini T, Sicari R, Bianchini E, Picano E (2011) Abnormal shortened diastolic time length at increasing heart rates in patients with abnormal exercise-induced increase in pulmonary artery pressure. Cardiovasc Ultrasound 9:36

    Article  PubMed Central  PubMed  Google Scholar 

  19. Armour JA, Pace JB, Randall WC (1970) Interrelationship of architecture and function of the right ventricle. Am J Physiol 218:174–9

    CAS  PubMed  Google Scholar 

  20. Curtis EI, Reddy PS, O’Toole JD, Shaver JA (1976) Alterations of right ventricular systolic time intervals by chronic pressure and volume overloading. Circulation 53:997–1003

    Article  Google Scholar 

  21. Hamzaoui O, Monnet X, Teboul JL (2013) Pulsus paradoxus. Eur Respir J 42:1696–705

    Article  PubMed  Google Scholar 

  22. Elstad M (2012) Respiratory variations in pulmonary and systemic blood flow in healthy humans. Acta Physiol 205:341–8

    Article  CAS  Google Scholar 

  23. Claessen G, Claus P, Delcroix M, et al (2014) Interaction between respiration and right versus left ventricular volumes at rest and during exercise- a real-time cardiac magnetic resonance study. Am J Physiol Heart Circ Physiol 306:H816–24

    Article  CAS  PubMed  Google Scholar 

  24. Karunanithi MK, Michniewicz J, Copeland SE, Feneley MP (1992) Right ventricular preload recruitable stroke work, endsystolic pressure-volume, and dP/dtmax-end-diastolic volume relations compared as indexes of right ventricular contractile performance in conscious dogs. Circ Res 70:1169–79

    Article  CAS  PubMed  Google Scholar 

  25. Guyton AC, Lindsey AW, Gilluly JL (1954) The limits of right ventricular compensation following acute increase in pulmonary circulatory resistance. Circ Res 2:326–32

    Article  CAS  PubMed  Google Scholar 

  26. Hoeper MM, Bogaard HJ, Condliffe R, et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62 (25 Suppl):D42–50

    Article  Google Scholar 

  27. Nadir MA, Beadle R, Lim HS (2014) Kussmaul physiology in patients with heart failure. Circ Heart Fail 7:440–7

    Article  PubMed  Google Scholar 

  28. MacNee W (1994) Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease: part one. Am J Respir Crit Care Med 150:833–52

    CAS  PubMed  Google Scholar 

  29. Chemla D, Castelain V, Hoette S, et al (2013) Strong linear relationship between heart rate and mean pulmonary artery pressure in exercising patients with severe precapillary pulmonary hypertension. Am J Physiol Heart Circ Physiol 305:H769–77

    Article  Google Scholar 

  30. Chemla D, Castelain V, Zhu K, et al (2013) Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension. Chest 143:1343–50

    Article  PubMed  Google Scholar 

  31. Kovacs G, Berghold A, Scheidl S, Olschewski H (2009) Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J 34:888–94

    Article  CAS  PubMed  Google Scholar 

  32. Naeije R (2003) Pulmonary vascular resistance. A meaningless variable? Intensive Care Med 29:526–9

    PubMed  Google Scholar 

  33. Enson Y (1977) Pulmonary heart disease: relation of pulmonary hypertension to abnormal lung structure and function. Bull N Y Acad Med 53:551–66

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Chemla D, Castelain V, Hervé P, et al (2002) Haemodynamic evaluation of pulmonary hypertension. Eur Respir J 20:1314–31

    Article  CAS  PubMed  Google Scholar 

  35. Naeije R (2013) Physiology of the pulmonary circulation and the right heart. Curr Hypertens Rep 15:623–31

    Article  CAS  PubMed  Google Scholar 

  36. Simonneau G, Gatzoulis MA, Adatia I, et al (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62(25 Suppl):D34–41

    Article  Google Scholar 

  37. Mahapatra S, Nishimura RA, Sorajja P, et al (2006) Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol 47:799–803

    Article  PubMed  Google Scholar 

  38. Sanz J, Kariisa M, Dellegrottaglie S, et al (2009) Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc Imaging 2:286–95

    Article  PubMed  Google Scholar 

  39. Reiter G, Reiter U, Kovacs G, et al (2008) Magnetic resonancederived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging 1:23–30

    Article  PubMed  Google Scholar 

  40. Guihaire J, Haddad F, Boulate D, et al (2013) Non-invasive indices of right ventricular function are markers of ventricular-arterial coupling rather than ventricular contractility: insights from a porcine model of chronic pressure overload. Eur Heart J Cardiovasc Imaging 14:1140–9

    Article  PubMed  Google Scholar 

  41. Vonk-Noordegraaf A, Haddad F, Chin KM, et al (2013) Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol 62:D22–33

    Article  Google Scholar 

  42. Sarnoff SJ, Berglund E (1954) Ventricular function. I. Starling’s law of the heart studied by means of simultaneous right and left ventricular function curves in the dog. Circulation 9:706–18

    Article  CAS  PubMed  Google Scholar 

  43. Santamore WP, Dell’Italia LJ (1998) Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Progr Cardiovasc Dis 40:289–308

    Article  CAS  Google Scholar 

  44. Buckberg GD and the RESTORE Group (2006) The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur J Cardiothorac Surg 29: S272–8

    Article  Google Scholar 

  45. Lamia B, Teboul JL, Monnet X, et al (2007) Relationship between the tricuspid annular plane systolic excursion and right and left ventricular function in critically ill patients. Intensive Care Med 33:2143–9

    Article  PubMed  Google Scholar 

  46. Mutlak D, Aronson D, Lessick J, et al (2009) Functional tricuspid regurgitation in patients with pulmonary hypertension: is pulmonary artery pressure the only determinant of regurgitation severity? Chest 135:115–21

    Article  PubMed  Google Scholar 

  47. Rao S, Tate DA, Stouffer GA (2013) Hemodynamic findings in severe tricuspid regurgitation. Cathet Cardiovasc Diagn 81:162–9

    Article  CAS  Google Scholar 

  48. Chemla D, Hébert JL, Coirault C, et al (1996) Matching dicrotic notch and mean pulmonary artery pressures: implications for effective arterial elastance. Am J Physiol 271:H1287–95

    Google Scholar 

  49. Jardin F, Delorme G, Hardy A, et al (1990) Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology 72:966–70

    Article  CAS  PubMed  Google Scholar 

  50. Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–8

    CAS  PubMed  Google Scholar 

  51. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Mekontso Dessap A, Boissier F (2012) Effets hémodynamiques de la pression expiratoire positive. Réanimation 21:209–17

    Article  Google Scholar 

  53. Fougères E, Teboul JL, Richard C, et al (2010) Hemodynamic impact of a positive end-expiratory pressure setting in acute respiratory distress syndrome: importance of the volume status. Crit Care Med 38:802–7

    Article  PubMed  Google Scholar 

  54. Vieillard-Baron A, Price LC, Mathay M (2013) Acute cor pulmonale in ARDS. What’s new? Intensive Care Med 39:1836–8

    Article  CAS  PubMed  Google Scholar 

  55. Jozwiak M, Teboul JL, Anguel N, et al (2013) Beneficial hemodynamic effects of prone positioning in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 188:1428–33

    PubMed  Google Scholar 

  56. Repessé X, Charron C, Vieillard-Baron A (2014) Une approche moderne de la ventilation dans le syndrome de détresse respiratoire aiguë: laissez le ventricule droit respirer ! Réanimation 23: S366–71

    Article  Google Scholar 

  57. Payen D (2012) Le monoxyde d’azote: quelle place en réanimation ? Réanimation 21:S455–9

    Article  Google Scholar 

  58. Jozwiak M, Teboul JL, Monnet X, Richard C (2013) Pression intra-abdominale et système cardiovasculaire chez le malade de réanimation. Réanimation 22:137–45

    Article  Google Scholar 

  59. Sztrymf B, Günther S, Humbert M (2014) Défaillance cardiaque dans l’hypertension artérielle pulmonaire idiopathique: les pièges à éviter. Réanimation 23:S352–65

    Article  Google Scholar 

  60. Chudeau N, Lerolle N, Diehl JL, Mercat A (2012) Conséquences hémodynamiques de l’embolie pulmonaire. Réanimation 21:149–57s

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chemla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemla, D. Physiologie du couplage entre le ventricule droit et la circulation pulmonaire. Réanimation 23, 402–411 (2014). https://doi.org/10.1007/s13546-014-0904-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-0904-y

Mots clés

Keywords

Navigation