Skip to main content
Log in

Prise en charge des pathologies réanimatoires et chirurgicales au cours des futures missions d’exploration spatiale

Management of critical and surgical conditions during future space exploration missions

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

La prise en charge des pathologies médicochirurgicales sévères au cours des futures missions d’exploration spatiale constituera un véritable défi. En raison d’innombrables contraintes, toutes les pathologies ne pourront pas accéder à une prise en charge et le système médical devra se focaliser sur les plus fréquentes et les plus sévères. L’objectif de cette étude est de proposer des recommandations afin d’optimiser le kit médical embarqué tout en réduisant le risque vital associé à de telles missions. Par une recherche bibliographique en médecine spatiale et milieux analogues, une liste exhaustive de pathologies attendues a été établie. Leur incidence par mission et leur mortalité moyenne ont été estimées. En croisant ces données avec différentes options de systèmes médicaux, il devient possible de mettre en balance la complexité du kit médical et le risque vital accepté et de déterminer quelles seraient les techniques thérapeutiques les plus essentielles. D’après l’analyse, les pathologies associées au risque vital le plus significatif sont en premier lieu les états septiques graves et les pathologies traumatiques sévères. Au-delà des traitements les plus simples (perfusions, antibiotiques, oxygénothérapie...), il apparaît fondamental de disposer de la capacité d’administrer des dérivés ou des substituts sanguins et de réaliser des actes chirurgicaux. Les résultats permettent également d’exclure certaines pathologies sévères mais estimées exceptionnelles.

Globalement, les résultats obtenus sont tout à fait concordants avec les publications sur le sujet et ont le potentiel d’améliorer les pratiques médicales sur Terre, par exemple en médecine humanitaire, militaire ou en environnement austère.

Abstract

During future space exploration missions, management of severe medical and surgical conditions will represent a challenge. Due to severe limitations in acute care capabilities, the medical system will need to focus only on the most likely and severe conditions. Using a probabilistic approach, the primary objective of this analysis is to offer recommendations for the preparation of crews and onboard medical systems, with the aim of optimizing the medical kit while maintaining the estimated mortality risk within acceptable limits. Based on the analysis of medical literature in space medicine and analogue environments, a list of expected conditions has been established. Their incidence and average mortality in similar populations have been estimated. By balancing medical kits complexity and estimated vital risk, it becomes possible to determine which therapeutic techniques are mandatory. According to the analysis, the conditions associated with the most significant risk are severe sepsis and traumatic injuries. Besides the basicmedical procedures (intravenous access, antibiotics, oxygen...), it seems essential to be able to administer blood products or substitutes and perform surgery. The results also provide a list of conditions that could probably be excluded from the medical system due to their poor outcome, complexmanagement and extremely low estimated likelihood. The results globally correspond to the conclusions of previous publications. Like numerous spin-offs of space technologies in the past, this research is useful to increase the level of care on Earth, in particular in harsh and isolated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Institute of Medicine (US), Committee on Creating a Vision for Space Medicine during Travel Beyond Earth Orbit, National Academy of Science, Board on Health Sciences Policy (2001) Safe passage astronaut care for exploration missions. In: Ball JR, Evans CH. National Academies Press Washington, DC

  2. Marshburn TH (2008) Acute Care. In: Barratt MR, Pool SL (eds) Principles of Clinical Medicine for Space Flight. Springer New York, pp 101–22

    Chapter  Google Scholar 

  3. Kirkpatrick AW, Ball CG, Campbell M, et al (2009) Severe traumatic injury during long duration spaceflight: Light years beyond ATLS. J Trauma Manag Outcomes 3:4

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kuypers MI (2013) Emergency and Wilderness Medicine Training for Physician Astronauts on Exploration Class Missions. Wild Environ Med 24:445–9

    Article  Google Scholar 

  5. Epelman S, Hamilton DR (2006) Medical Mitigation Strategies for Acute Radiation Exposure During Spaceflight. Aviat Space Environ Med 77:130–9

    PubMed  Google Scholar 

  6. Friedberg W, Darden E (2005) Health aspects of radiation exposure on a simulated mission to Mars. Radioactivity in the Environment Elsevier, Simopulos, ES, Amsterdam, pp 894–901

    Google Scholar 

  7. Sams CF, Pierson DL (2008) Immunologic Concerns. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. Springer New York, pp 307–15

    Chapter  Google Scholar 

  8. Baker ES, Barratt MR, Wear ML (2008) Human Response to Spaceflight. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. Springer New York NY, pp 27–58

    Chapter  Google Scholar 

  9. Convertino VA, Cooke WH (2005) Evaluation of cardiovascular risks of spaceflight does not support the nasa bioastronautics critical path roadmap. Aviat Space Environ Med 76:869–76

    PubMed  Google Scholar 

  10. Karlsson LL, Blogg SL, Lindholm P, et al (2009) Venous gas emboli and exhaled nitric oxide with simulated and actual extravehicular activity. Respir Physiol Neurobiol 169:S59–S62

    Article  CAS  PubMed  Google Scholar 

  11. Katuntsev VP (2010) Approaches to decompression safety support of EVA for orbital and interplanetary missions. Acta Astronautica 66:96–101

    Article  CAS  Google Scholar 

  12. Webb JT, Pilmanis AA (2005) Altitude decompression sickness between 6858 and 9144 m following a 1-h prebreathe. Aviat Space Environ Med 76:34–38

    PubMed  Google Scholar 

  13. Barratt M, Pool SL (2008) Principles of clinical medicine for space flight. Springer

    Book  Google Scholar 

  14. Comet B, Berry I, Berthier A, et al (2002) MARSTECHCARE, necessary biomedical technologies for crew health control during long-duration interplanetary manned missions. ESA Contract ESTEC N° 16423/02/NL/LvH. 151 p

    Google Scholar 

  15. Smith SM, Lane HW (2008) Spaceflight metabolism and nutritional support. In: Barratt MR, Pool SL (eds) Principles of clinical medicine for space flight. Springer New York, pp 559–76

    Chapter  Google Scholar 

  16. Lasseur C, Brunet J, de Weever H, et al (2011) MELISSA: the European project of closed life support system. Gravitational and Space Research 23:3–12

    Google Scholar 

  17. Yunan Yang LT (2009) Silkworms culture as a source of protein for humans in space. Advances in Space Research 4:1236–42

    Article  Google Scholar 

  18. Nicogossian AE, Huntoon CL, Pool SL (1994) Space physiology and medicine. Lea & Fibiger Philadelphia

    Google Scholar 

  19. Berry C, Dietlein L, Johnson R (1975) Biomedical results of Apollo, Scientific and Technical Information Office, NASA

    Google Scholar 

  20. Summers RL, Johnston SL, Marshburn TH, Williams DR (2005) Emergencies in space. Ann Emerg Med 46:177–84

    Article  PubMed  Google Scholar 

  21. Peterson LE, Pepper LJ, Hamm PB, Gilbert SL (1993) Longitudinal study of astronaut health: mortality in the years 1959–1991. Radiat Res 133:257–64

    Article  CAS  PubMed  Google Scholar 

  22. Australian Institute of Health and Welfare (2000) AIHW Burden of Disease Report

    Google Scholar 

  23. Center for Disease Control and Prevention (2013) Deaths: Final Data for 2010.

  24. Angus DC, Wax RS (2001) Epidemiology of sepsis: an update. Crit Care Med 29:S109–16

    Article  CAS  PubMed  Google Scholar 

  25. Martin GS (2012) Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther 10:701–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lecky FE, Bouamra O, Woodford M, et al (2010) Epidemiology of polytrauma. In: Pape HC, Peitzman A, Schwab CW, Giannoudis PV (eds) Damage control management in the polytrauma patient. Springer New York, pp 13–24

    Chapter  Google Scholar 

  27. Demirhan R, Onan B, Oz K, Halezeroglu S (2009) Comprehensive analysis of 4205 patients with chest trauma: a 10-year experience. Interact Cardio Vasc Thorac Surg 9:450–3

    Article  Google Scholar 

  28. Bernardo CG, Fuster J, Bombuy E, et al (2010) Treatment of liver trauma: operative or conservative management. Gastroenterol Res 3:9–18

    Google Scholar 

  29. Fölsch UR, Nitsche R, Lüdtke R, et al (1997) Early ERCP and papillotomy compared with conservative treatment for acute biliary pancreatitis. The German Study Group on Acute Biliary Pancreatitis. N Engl J Med 336:237–42

    Article  PubMed  Google Scholar 

  30. Rubenfeld GD, Caldwell E, Peabody E, et al (2005) Incidence and outcomes of acute lung injury. N Eng J Med 353:1685–93

    Article  CAS  Google Scholar 

  31. Zambon M, Vincent JL (2008) Mortality rates for patients with acute lung injury/ards have decreased over time. Chest 133:1120–7

    Article  PubMed  Google Scholar 

  32. Cucinotta FA, Kim MH, Ren L, (2006) Evaluating shielding effectiveness for reducing space radiation cancer risks. Radiat Meas 41:1173–85

    Article  CAS  Google Scholar 

  33. Button LA, Roberts SE, Evans PA, et al (2011) Hospitalized incidence and case fatality for upper gastrointestinal bleeding from 1999 to 2007: a record linkage study. Aliment Pharmacol Ther 33:64–76

    Article  CAS  PubMed  Google Scholar 

  34. Leontiadis GI, Sharma VK, Howden CW (2007) Proton pump inhibitor therapy for peptic ulcer bleeding: Cochrane collaboration meta-analysis of randomized controlled trials. Mayo Clin Proc 82:286–96

    Article  CAS  PubMed  Google Scholar 

  35. Romero V, Akpinar H, Assimos DG (2010) Kidney Stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12:e86–e96

    PubMed Central  PubMed  Google Scholar 

  36. Van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369:306–18

    Article  PubMed  Google Scholar 

  37. Syme PD, Byrne AW, Chen R, et al (2005) Community-based stroke incidence in a Scottish population: the Scottish Borders Stroke Study. Stroke 36:1837–43

    Article  PubMed  Google Scholar 

  38. Rodgers H, Thomson R (2008) Functional status and long term outcome of stroke. BMJ 336:337–8

    Article  PubMed Central  PubMed  Google Scholar 

  39. Gillis DB, Hamilton DR (2012) Estimating outcomes of astronauts with myocardial infarction in exploration class space missions. Aviat Space Environ Med 83:79–91

    Article  PubMed  Google Scholar 

  40. Bederman SS, Murnaghan O, Malempati H, et al (2011) In-hospital mortality and surgical utilization in severely polytraumatized patients with and without spinal injury. J Trauma 71:E71–E8

    Article  PubMed  Google Scholar 

  41. Hong JJ, Cohn SM, Perez JM, et al (2002) Prospective study of the incidence and outcome of intra-abdominal hypertension and the abdominal compartment syndrome. Br J Surg 89:591–6

    Article  CAS  PubMed  Google Scholar 

  42. Bliuc D, Nguyen ND, Milch VE, et al (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–21

    Article  CAS  PubMed  Google Scholar 

  43. Simons FE (2009) Anaphylaxis: Recent advances in assessment and treatment. J Allergy Clin Immunol 124:625–36

    Article  CAS  PubMed  Google Scholar 

  44. Vann RD (2004) The Divers Alert Network 2004 Annual Report on Decompression Illness, Diving Fatalities and Project Dive Exploration. DAN

    Google Scholar 

  45. Rice SA (2004) Human health risk assessment of CO2: survivors of acute high-level exposure and population sensitive to prolonged low-level exposure. Poster 11-01 presented at 3rd Annual conference on carbon sequestration, 3-6 May 2004, Alexandria VA, USA

    Google Scholar 

  46. National Health Service (2010) Kidney disease key facts and figures [Internet]. Available from www.healthcheck.nhs.uk/document.php?o=81

    Google Scholar 

  47. Summers RL, Coleman TG (2002) Computer systems analysis of the cardiovascular mechanisms of reentry orthostasis in astronauts. Comput Cardiol 29:521–4

    CAS  PubMed  Google Scholar 

  48. Bouchama A, Knochel JP (2002) Heat Stroke. N Engl J Med 346:1978–88

    Article  CAS  PubMed  Google Scholar 

  49. Holzheimer RG, Mannick JA (eds) (2001) Surgical treatment: evidence-based and problem-oriented. Zuckschwerdt Munich

    Google Scholar 

  50. Tapson VF (2008) Acute pulmonary embolism. N Engl J Med 358:1037–52

    Article  CAS  PubMed  Google Scholar 

  51. Volz KA, Canham L, Kaplan E, et al (2013) Identifying patients with cellulitis who are likely to require inpatient admission after a stay in an ED observation unit. Am J Emerg Med 31:360–4

    Article  PubMed  Google Scholar 

  52. Dormandy J, Heeck L, Vig S (1999) Acute limb ischemia. Semin Vasc Surg 12:148–53

    CAS  PubMed  Google Scholar 

  53. Mallet ML (2002) Pathophysiology of accidental hypothermia. QJM 95:775–85

    Article  CAS  PubMed  Google Scholar 

  54. Knake S, Rosenow F, Vescovi M, et al (2001) Incidence of status epilepticus in adults in Germany: a prospective, population-based study. Epilepsia 42:714–8

    Article  CAS  PubMed  Google Scholar 

  55. Rossetti AO, Hurwitz S, Logroscino G, Bromfield EB (2006) Prognosis of status epilepticus: role of aetiology, age, and consciousness impairment at presentation. J Neurol Neurosurg Psychiatry 77:611–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (2006) Community-acquired bacterial meningitis in adults. N Engl J Med 354:44–53

    Article  PubMed  Google Scholar 

  57. Torén K, Hermansson BA (1999) Incidence rate of adult-onset asthma in relation to age, sex, atopy and smoking: a Swedish population-based study of 15813 adults. Int J Tuberc Lung Dis 3:192–7

    PubMed  Google Scholar 

  58. American Burn Association (2012) National Burn Repository Annual Report.

    Google Scholar 

  59. Muir JF, Cuvelier A, Molano C, Viacroze C (2007) Acute respiratory distress in the adult. Foreign bodies of the upper respiratory tract. Rev Prat 57:1487–95

    PubMed  Google Scholar 

  60. Thorsen K, Søreide JA, Kvaløy JT, et al (2013) Epidemiology of perforated peptic ulcer: age- and gender-adjusted analysis of incidence and mortality. World J Gastroenterol 19:347–54

    Article  PubMed Central  PubMed  Google Scholar 

  61. Fonarow GC, Adams KF, Abraham WT, et al (2005) Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA 293:572–80

    Article  CAS  PubMed  Google Scholar 

  62. Bretherick AD, Craig DG, Masterton G, et al (2011) Acute liver failure in Scotland between 1992 and 2009; incidence, aetiology and outcome. QJM 104:945–56

    Article  CAS  PubMed  Google Scholar 

  63. Fartoukh M, Khoshnood B, Parrot A, et al (2012) Early prediction of in-hospital mortality of patients with hemoptysis: an approach to defining severe hemoptysis. Respiration 83:106–14

    Article  PubMed  Google Scholar 

  64. Ringdahl E, Teague L (2006) Testicular torsion. Am Fam Physician 74:1739–43

    PubMed  Google Scholar 

  65. Otto C, Comtois J-M, Sargsyan A, et al (2010) The Martian chronicles: remotely guided diagnosis and treatment in the Arctic Circle. Surg Endosc 24:2170–7

    Article  PubMed  Google Scholar 

  66. Dawson DL (2008) On the practicality of emergency surgery during long-duration space missions. Aviat Space Environ Med 79:712–3

    Article  PubMed  Google Scholar 

  67. Saluja IS, Williams DR, Woodard D, et al (2008) Survey of astronaut opinions on medical crewmembers for a mission to Mars. Acta Astronautica 63:586–93

    Article  Google Scholar 

  68. Campbell M, Billica R (2008) Surgical capabilities. In: Principles of Clinical Medicine for Space Flight. Barratt & Pool Springer pp. 123–37

    Chapter  Google Scholar 

  69. Jay GD, Lee P, Goldsmith H, et al (2003) CPR effectiveness in microgravity: comparison of three positions and a mechanical device. Aviat Space Environ Med 74:1183–9

    PubMed  Google Scholar 

  70. Grasser L, Helleringer F (2012) “Morphee”, a flying intensive care unit. Rev Infirm 186:22–4

    PubMed  Google Scholar 

  71. Norfleet W (2000) Anesthetic concerns of spaceflight. Anesthesiology 98:1219

    Article  Google Scholar 

  72. Agnew J, Fibuch E, Hubbard J (2004) Anesthesia during and after exposure to microgravity. Aviat Space Environ Med 75:571–80

    PubMed  Google Scholar 

  73. Komorowski M, Watkins SD, Lebuffe G, Clark JB (2013) Potential Anesthesia Protocols for Space Exploration Missions. Aviat Space Environ Med 84:226–33

    Article  PubMed  Google Scholar 

  74. Putcha L (1999) Pharmacotherapeutics in space. J Gravit Physiol 6:P165–8

    CAS  PubMed  Google Scholar 

  75. Watkins S (2012) Space Medicine Exploration: Full Medical Condition List Rev B (No. JSC-65722). NASA Center for Aero- Space Information. Retrieved from: https://humanresearchwiki.jsc.nasa.gov/images/c/cc/Space_Medicine_Exploration_Condition_List_Rev_B_2012.pdf

    Google Scholar 

  76. Ball CG, Kirkpatrick AW, Williams DR, et al (2012) Prophylactic surgery prior to extended-duration space flight: is the benefit worth the risk? Can J Surg 55:125–31

    Article  PubMed Central  PubMed  Google Scholar 

  77. Kirkpatrick AW, Keaney M, Hemmelgarn B, et al (2009) Intraabdominal pressure effects on porcine thoracic compliance in weightlessness: implications for physiologic tolerance of laparoscopic surgery in space Crit Care Med 37:591–7

    Article  PubMed  Google Scholar 

  78. Holcomb JB (2010) Optimal use of blood products in severely injured trauma patients. Hematology Am Soc Hematol Educ Program 2010:465–9

    Article  PubMed Central  PubMed  Google Scholar 

  79. Miller TE (2013) New evidence in trauma resuscitation- is 1:1:1 the answer? Perioper Med 2:13

    Article  Google Scholar 

  80. Fabricant L, Kiraly L, Wiles C, et al (2013) Cryopreserved deglycerolized blood is safe and achieves superior tissue oxygenation compared with refrigerated red blood cells: a prospective randomized pilot study. J Trauma Acute Care Surg 74:371–6

    Article  CAS  PubMed  Google Scholar 

  81. Daban JL, Clapson P, Ausset S, et al (2010) Freeze dried plasma: a French army specialty. Crit Care 14:412

    Article  PubMed Central  PubMed  Google Scholar 

  82. Chen J-Y, Scerbo M, Kramer G (2009) A Review of Blood Substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics (Sao Paulo) 64:803–13

    Article  Google Scholar 

  83. Giarratana M-C, Rouard H, Dumont A, et al (2011) Proof of principle for transfusion of in vitro generated red blood cells. Blood 118:5071–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Perrotta PL, Perkins EM (1993) A History of computer-assisted medical diagnosis at Naval Submarine Medical Research Laboratory, Naval Submarine Medical Research Laboratory. Groton, CT

    Google Scholar 

  85. Reisner AT, Khitrov MY, Chen L, et al (2013) Development and validation of a portable platform for deploying decision-support algorithms in prehospital settings Appl Clin Inform 4:392–402

    Article  CAS  PubMed  Google Scholar 

  86. Gomes P (2011) Surgical robotics: reviewing the past, analyzing the present, imagining the future. Robot Cim-Int Manuf 27:261–6

    Article  Google Scholar 

  87. Watenpaugh DE (2001) Fluid volume control during short-term space flight and implications for human performance. J Exp Biol 204:3209–15

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Komorowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komorowski, M., Comet, B. Prise en charge des pathologies réanimatoires et chirurgicales au cours des futures missions d’exploration spatiale. Réanimation 23, 431–444 (2014). https://doi.org/10.1007/s13546-014-0899-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-0899-4

Mots clés

Keywords

Navigation