Skip to main content
Log in

Spontaneous Radiation of a Two-Level System Confined in a Reflective Spherical Shell Quantum Dot

Spontaneous Radiation of a Two-Level System in a Spherical Shell

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Using a first-order time-dependent perturbation theory, we calculate the spontaneous emission rate of a two-level system trapped between perfectly reflecting concentric spheres. The emitter is represented by a two-level monopole coupled to a Hermitian massless scalar field satisfying Dirichlet boundary conditions in such quantum-confined low-dimensional structure. We obtained the appropriate Green’s function evaluated in worldline of the atom which incorporates contributions from an infinite set of variable image charges. We provide an analytical expression for the decay rate to investigate the radiation process of the trapped atomic system. We perform a broad analysis of the dependence of the decay rate for different relations between the radii of spheres and the emitted radiation energy. We unveil regimes of strong suppression of the spontaneous emission rate as well as the development of irregular oscillations as a function of the quantum of emitted energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Betzig, R.J. Chichester, Single molecules observed by near-field scanning optical microscopy, Science (5138). https://doi.org/10.1126/science.262.5138.1422 (1422)

  2. T.H. Taminiau, F.D. Stefani, F.B. Segerink, N.F. van Hulst, Optical antennas direct single-molecule emission, Nat. Photonics (4), 234. https://doi.org/10.1038/nphoton.2008.32

  3. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. (1), 017402. https://doi.org/10.1103/PhysRevLett.97.017402

  4. M. Khajavikhan, A. Simic, M. Katz, J.H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Thresholdless nanoscale coaxial lasers, Nature (7384), 204. https://doi.org/10.1038/nature10840

  5. M. Frimmer, A.F. Koenderink, Spontaneous emission control in a tunable hybrid photonic system, Phys. Rev. Lett. (21), 217405. https://doi.org/10.1103/PhysRevLett.110.217405

  6. E.M. Purcell, Spontaneous emission probabilities at radio frequencies, Phys. Rev. (11-12), 681. https://doi.org/10.1103/PhysRev.69.674

  7. J. Zhang, M. Wubs, P. Ginzburg, G. Wurtz, A.V. Zayats, Transformation quantum optics: designing spontaneous emission using coordinate transformations. J. Opt. 18, 044029 (2016). https://doi.org/10.1088/2040-8978/18/4/044029

    Article  ADS  Google Scholar 

  8. P. Stehle, Atomic radiation in a cavity, Phys. Rev. A (1), 102. https://doi.org/10.1103/PhysRevA.2.102

  9. G. Barton, Quantum electrodynamics of spinless particles between conducting plates, Proceedings of the Royal Society A: Mathematical, Phys. Eng. Sci. (1541), 251. https://doi.org/10.1098/rspa.1970.0208

  10. M.R. Philpott, Fluorescence from molecules between mirrors, Chem. Phys. Lett. (3), 435. https://doi.org/10.1016/0009-2614(73)80399-9

  11. P. Milonni, P. Knight, Spontaneous emission between mirrors, Opt. Commun. (2), 119. https://doi.org/10.1016/0030-4018(73)90239-3

  12. P. Goy, J.M. Raimond, M. Gross, S. Haroche, Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. (24), 1903. https://doi.org/10.1103/PhysRevLett.50.1903

  13. R.G. Hulet, E.S. Hilfer, D. Kleppner, Inhibited spontaneous emission by a Rydberg atom, Phys. Rev. Lett. (20), 2137. https://doi.org/10.1103/PhysRevLett.55.2137

  14. W. Jhe, A. Anderson, E. A. Hinds, D. Meschede, L. Moi, S. Haroche, Suppression of spontaneous decay at optical frequencies: test of vacuum-field anisotropy in confined space, Phys. Rev. Lett. (14), 1497. https://doi.org/10.1103/PhysRevLett.58.1497.2

  15. H.M. França, T.W. Marshall, E. Santos, Spontaneous emission in confined space according to stochastic electrodynamics, Phys. Rev. A (9), 6436. https://doi.org/10.1103/PhysRevA.45.6436

  16. L.H. Ford, N.F. Svaiter, M.L. Lyra, Radiative properties of a two-level system in the presence of mirrors. Phys. Rev. A. 49(2), 1378 (1994). https://doi.org/10.1103/PhysRevA.49.1378

    Article  ADS  Google Scholar 

  17. P.S. Davids, P.B. Lerner, Suppression of atomic radiation in a cylindrical nanocavity, Zeitschrift fr Physik D Atoms, Mol. Clusters (3), 203. https://doi.org/10.1007/BF01437312

  18. M. Kauranen, Y. Van Rompaey, J.J. Maki, A. Persoons, Nonvanishing field between a dipole oscillator and a reflecting boundary during suppression of dipole radiation, Phys. Rev. Lett. (5), 952. https://doi.org/10.1103/PhysRevLett.80.952

  19. M.J.A. de Dood, L.H. Slooff, A. Polman, A. Moroz, A. van Blaaderen, Modified spontaneous emission in erbium-doped SiO[sub 2] spherical colloids, Appl. Phys. Lett. (22), 3585. https://doi.org/10.1063/1.1419033

  20. H.T. Dung, L. Knöll, D.G. Welsch, Decay of an excited atom near an absorbing microsphere, Phys. Rev. A (1), 013804. https://doi.org/10.1103/PhysRevA.64.013804

  21. K.J. Vahala, Optical microcavities, Nature (6950), 839. https://doi.org/10.1038/nature01939

  22. V.V. Klimov, M. Ducloy, V.S. Letokhov, Spontaneous emission rate and level shift of an atom inside a dielectric microsphere, J. Mod. Opt. (3), 549. https://doi.org/10.1080/09500349608232764

  23. A. Moroz, Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell, Chem. Phys. (1), 1. https://doi.org/10.1016/j.chemphys.2005.05.003

  24. R. Carminati, J.J. Greffet, C. Henkel, J. Vigoureux, Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle, Opt. Commun. (2), 368. https://doi.org/10.1016/j.optcom.2005.12.009

  25. H. Walther, B.T.H. Varcoe, B.G. Englert, T. Becker, Cavity quantum electrodynamics, Rep. Prog. Phys. (5), 1325. https://doi.org/10.1088/0034-4885/69/5/R02

  26. V. Yannopapas, N.V. Vitanov, Spontaneous emission of a two-level atom placed within clusters of metallic nanoparticles, J. Phys. Condens. Matter (9), 096210. https://doi.org/10.1088/0953-8984/19/9/096210

  27. K.K. Pukhov, T.T. Basiev, Y.V. Orlovskii, Spontaneous emission in dielectric nanoparticles, JETP Lett. (1), 12. https://doi.org/10.1134/S0021364008130043

  28. L. Ford, T.A. Roman, Effects of vacuum fluctuation suppression on atomic decay rates, Ann. Phys. (8), 2294. https://doi.org/10.1016/j.aop.2011.04.004

  29. F.A. Inam, T. Gaebel, C. Bradac, L. Stewart, M.J. Withford, J.M. Dawes, J.R. Rabeau, M.J. Steel, Modification of spontaneous emission from nanodiamond colour centres on a structured surface, New J. Phys. (7), 073012. https://doi.org/10.1088/1367-2630/13/7/073012

  30. C. Sauvan, J.P. Hugonin, I.S. Maksymov, P. Lalanne, Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators, Phys. Rev. Lett. (23), 237401. https://doi.org/10.1103/PhysRevLett.110.237401

  31. S. Haroche, Controlling photons in a box and exploring the quantum to classical boundary, Ann. Phys. (10-11), 753. https://doi.org/10.1002/andp.201300737

  32. Z. Mohammadi, F. Kheirandish, Energy-level shifts and the decay rate of an atom in the presence of a conducting wedge, Phys. Rev. A (6), 062118. https://doi.org/10.1103/PhysRevA.92.062118

  33. A. Bienfait, J.J. Pla, Y. Kubo, X. Zhou, M. Stern, C.C. Lo, C.D. Weis, T. Schenkel, D. Vion, D. Esteve, J.J.L. Morton, P. Bertet, Controlling spin relaxation with a cavity, Nature (7592), 74. https://doi.org/10.1038/nature16944

  34. H. Xiong, M. Scully, M. Zubairy, Correlated spontaneous emission laser as an entanglement amplifier, Phys. Rev. Lett. (2), 023601. https://doi.org/10.1103/PhysRevLett.94.023601

  35. E. Arias, J.G. Dueñas, G. Menezes, N.F. Svaiter, Boundary effects on radiative processes of two entangled atoms, J. High Energy Phys. (7), 147. https://doi.org/10.1007/JHEP07(2016)147

  36. Y. Yang, J. Hu, H. Yu, Entanglement dynamics for uniformly accelerated two-level atoms coupled with electromagnetic vacuum fluctuations, Phys. Rev. A (3), 032337. https://doi.org/10.1103/PhysRevA.94.032337

  37. G. Menezes, N.F. Svaiter, Radiative processes of uniformly accelerated entangled atoms, Phys. Rev. A (5), 052117. https://doi.org/10.1103/PhysRevA.93.052117

  38. R.P.A. Lima, F.N. Lima, M.L. Lyra, Spontaneous decay of a two-level system close to a perfectly reflecting sphere. Ann. Phys. 372, 162 (2017). https://doi.org/10.1016/j.aop.2017.01.017

    Article  ADS  Google Scholar 

  39. L. Dong, A. Sugunan, J. Hu, S. Zhou, S. Li, S. Popov, M.S. Toprak, A.T. Friberg, M. Muhammed, Photoluminescence from quasi-type-II spherical CdSe-CdS core-shell quantum dots. Appl. Opt. 52(1), 105 (2013). https://doi.org/10.1364/AO.52.000105

    Article  ADS  Google Scholar 

  40. C. Liao, K. Fan, R. Xu, H. Zhang, C. Lu, Y. Cui, J. Zhang, Laser-annealing-made amplified spontaneous emission of “giant” CdSe/CdS core/shell nanocrystals transferred from bulk-like shell to quantum-confined core. Photon. Res. 3(5), 200 (2015). https://doi.org/10.1364/PRJ.3.000200

    Article  Google Scholar 

  41. M.S.R. Miltão, Casimir energy for a double spherical shell: a global mode sum approach, Phys. Rev. D (6), 065023. https://doi.org/10.1103/PhysRevD.78.065023

  42. W.G. Unruh, Notes on black-hole evaporation, Phys. Rev. D (4), 870. https://doi.org/10.1103/PhysRevD.14.870

  43. B. DeWitt, in . General relativity: an Einstein centenary survey, ed. by S. Hawking, W. Israel. (Cambridge University Press), chap. Quantum gr, p. 944, (1979)

  44. P.C.W. Davies, Z.X. Liu, A.C. Ottewill, Particle detectors in the presence of boundaries, Classical and Quantum Gravity (7), 1041. https://doi.org/10.1088/0264-9381/6/7/010

  45. B.F. Svaiter, N.F. Svaiter, Inertial and noninertial particle detectors and vacuum fluctuations, Phys. Rev. D (12), 5267. https://doi.org/10.1103/PhysRevD.46.5267

  46. B.F. Svaiter, N.F. Svaiter, Quantum processes: stimulated and spontaneous emission near cosmic strings, Classical and Quantum Gravity (2), 347. https://doi.org/10.1088/0264-9381/11/2/007

  47. F. Benatti, R. Floreanini, Entanglement generation in uniformly accelerating atoms: Reexamination of the Unruh effect, Phys. Rev. A (1), 012112. https://doi.org/10.1103/PhysRevA.70.012112

  48. J. Zhang, H. Yu, Unruh effect and entanglement generation for accelerated atoms near a reflecting boundary, Phys. Rev. D (10), 104014. https://doi.org/10.1103/PhysRevD.75.104014

  49. A.G.S. Landulfo, G.E.A. Matsas, Sudden death of entanglement and teleportation fidelity loss via the Unruh effect, Phys. Rev. A (3), 032315. https://doi.org/10.1103/PhysRevA.80.032315

  50. J. Doukas, B. Carson, Entanglement of two qubits in a relativistic orbit, Phys. Rev. A (6), 062320. https://doi.org/10.1103/PhysRevA.81.062320

  51. D.C.M. Ostapchuk, S.Y. Lin, R.B. Mann, B.L. Hu, Entanglement dynamics between inertial and non-uniformly accelerated detectors, J. High Energy Phys. (7), 72. https://doi.org/10.1007/JHEP07(2012)072

  52. X. Liu, Z. Tian, J. Wang, J. Jing, Radiative process of two entanglement atoms in de Sitter spacetime, Phys. Rev. D (10), 105030. https://doi.org/10.1103/PhysRevD.97.105030

  53. J.T. Chen, H.C. Shieh, J.J. Tsai, J.W. Lee, Equivalence between Trefftz method and method of fundamental solutions for the Green’s function of concentric spheres using the addition theorem and image concept. WIT Transactions on Modelling and Simulation. 49, 23 (2009). https://doi.org/10.2495/BE090031

    Article  MathSciNet  Google Scholar 

  54. P. Langlois, Causal particle detectors and topology, Ann. Phys. pp. 2027–2070. https://doi.org/10.1016/j.aop.2006.01.013

  55. P.C.W. Davies, A.C. Ottewill, Detection of negative energy: 4-dimensional examples, Phys. Rev. D (1), 104014. https://doi.org/10.1103/PhysRevD.65.104014

  56. N. Megier, D. Chruściński, J. Piilo, W.T. Strunz, Eternal non-Markovianity: from random unitary to Markov chain realisations, Sci. Rep. (1), 6379. https://doi.org/10.1038/s41598-017-06059-5

  57. D. Moustos, C. Anastopoulos, Non-Markovian time evolution of an accelerated qubit, Phys. Rev. D (2), 025020. https://doi.org/10.1103/PhysRevD.95.025020

  58. G. Menezes, N.F. Svaiter, Vacuum fluctuations and radiation reaction in radiative processes of entangled states, Phys. Rev. A (6), 062131. https://doi.org/10.1103/PhysRevA.92.062131

Download references

Funding

This study is partially and financiall supported by the Brazilian research agencies CNPq and CAPES, as well as from the Alagoas State research agency FAPEAL. FNL was supported by the program CAPES/DINTER/IFPI/UFAL/23038.000902/2016-90.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. N. Lima.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, F.N., Lima, R.P.A. & Lyra, M.L. Spontaneous Radiation of a Two-Level System Confined in a Reflective Spherical Shell Quantum Dot. Braz J Phys 49, 423–431 (2019). https://doi.org/10.1007/s13538-019-00648-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-019-00648-7

Keywords

Navigation