Skip to main content
Log in

Field Effect Transistor Using Carbon Nanotubes and DNA as Electrical Gate

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

We present an electronic sensor in the molecular scale, which is very sensitive for detection and sensing of DNA characteristics and DNA activities in particular activities between DNA duplex and any protein. Here, the device shows that DNA is electronically inserted to be on the same time as an electrical device transducer and as a biological target in a carbon nanotube-DNA-carbon nanotube electronic sensor. We have performed a DNA binding through an amide group by the electron transfer through amide group. The presented device has shown an efficient and rapid procedure to bind the electrical vulnerability of DNA with the detection of enzymatic effectiveness leading to high efficient biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Shankar, J. Mittal, A. Jagota, Binding between DNA and carbon nanotubes strongly depends upon sequence and chirality. Langmuir 30(11), 3176–3183 (2014)

    Article  Google Scholar 

  2. E.N. Andre, M. Lutz, V. Darrell, X. Tian, M.V. Eric, P. Hoek, F.K. Somasundaran, C. Vince, T. Mike, Understanding bio-physicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009)

    Article  Google Scholar 

  3. D.P.E. Smith, Quantum point-contact switches. Science 269, 371–373 (1995)

    Article  ADS  Google Scholar 

  4. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, Quantized conductance atomic switch. Nature 433, 47–50 (2005)

    Article  ADS  Google Scholar 

  5. C. N. R. Rao, A. Govindaraj, Nanotubes and Nanowires, RSC publishing, 2011

  6. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y. Li, W. Kim, P.J. Utz, H. Dai, Proc. Natl. Acad. Sci. U. S. A. 100, 4984 (2003)

    Article  ADS  Google Scholar 

  7. Ali Afzali-Ardakani, Gustavo A. Stolovitzky, Deqiang Wang, Integrated carbon nanotube field effect transistor and nanochannel for sequencing, Publication number US8969118 B2.

  8. S. Sorgenfrei, C.-Y. Chiu, R.L. Gonzalez Jr., Y.-J. Yu, P. Kim, C. Nuckolls, K.L. Shepard, Nat. Nanotechnol. 11, 1093 (2011)

    Google Scholar 

  9. Nikolai Dontschuk, Alastair Stacey, Anton Tadich, Kevin J. Rietwyk, Alex Schenk, Mark T. Edmonds, Olga Shimoni, Chris I. Pakes, Steven Prawer & Jiri Cervenka (2015) A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases, Nature Communications, 6, Article number:6563 doi:10.1038/ncomms7563.

  10. Paul A. Rhodes, Samuel M. Khamis, Hybrid sensor array, Publication number, US20120028820 A1, 2012

  11. K. Balasubramanian, M. Burghard, Anal. Bioanal. Chem. 2006 385, 452

  12. C.B. Jacobs, M.J. Peairs, B.J. Venton, Anal. Chim. Acta 662, 105 (2010)

    Article  Google Scholar 

  13. M.Y. Sfeir, T. Beetz, F. Wang, L. Huang, X.M.H. Huang, M. Huang, J. Hone, S. O’Brien, J.A. Misewich, T.F. Heinz, L. Wu, Y. Zhu, L.E. Brus, Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure. Science 312, 554–556 (2006)

    Article  ADS  Google Scholar 

  14. R.A. Villamizar, A. Maroto, F. Xavier Rius, Improved detection of Candida albicans with carbon nanotube field-effect transistors. Sensors Actuators B 136, 451–457 (2009)

    Article  Google Scholar 

  15. X. Guo, A.A. Gorodetsky, J. Hone, J.K. Barton, C. Nuckolls, Nat. Nanotechnol. 3, 163 (2008)

    Article  ADS  Google Scholar 

  16. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, et al., Nanotube molecular wires as chemical sensors. Science 287, 622 (2000)

    Article  ADS  Google Scholar 

  17. R.A. Villamizar, A. Maroto, F.X. Riusa, I. Inza, M.J. Figueras, Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosens. Bioelectron. 24, 279–283 (2008)

    Article  Google Scholar 

  18. J. Oh, S. Yoo, Y.W. Chang, K. Lim, K.H. Yoo, Carbon nanotube-based biosensor for detection hepatitis B. Curr. Appl. Phys. 9, E229–E231 (2009)

    Article  ADS  Google Scholar 

  19. S.O. Kelley, J.K. Barton, Science 283, 375 (1999)

    Article  ADS  Google Scholar 

  20. J.C. Genereux, J.K. Barton, Chem. Rev. 110, 1642 (2010)

    Article  Google Scholar 

  21. P. Renbaum, D. Abrahamove, A. Fainsod, G. Wilson, S. Rottem, A. Razin, Nucleic Acids Res. 18, 1145 (1990)

    Article  Google Scholar 

  22. A. Razin, P. Renbaum, J. Mol. Biol. 248, 19 (1995)

    Article  Google Scholar 

  23. S. Klimasauskas, E. Weinhold, S. Serva, E. Merkiene, G. Vilkaitis, J. Biol. Chem. 276, 20924 (2001)

    Article  Google Scholar 

  24. A.K. Dubey, R.J. Roberts, Nucleic Acids Res. 20, 3167 (1992)

    Article  Google Scholar 

  25. S. Abdalla, Prog. Biophys. Mol. Biol. 106, 485–497 (2011)

    Article  Google Scholar 

  26. B.Q. Xu, N.J.J. Tao, Science 301, 1221 (2003)

    Article  ADS  Google Scholar 

  27. Y. Otsuka, H.-y. Lee, G. Jian-hua, J.-O. Lee, K.-H. Yoo, H. Tanaka, H. Tabata, T. Kawai, Influence of humidity on the electrical conductivity of synthesized DNA film on nanogap electrode. Jpn. J. Appl. Phys. 41, 891. doi:10.1143/JJAP.41.891

  28. D. Yang, L. Wang, Q. Zhao, S. Li, Fabrication of single-walled carbon nanotubes (SWNTs) field-effect transistor (FET) biosensor. BMEI 3rd 4, 1482–1485 (2010)

    Google Scholar 

  29. T. Kleine-Ostmann, C. Jordens, K. Baaske, T. Weimann, M.H. de Angelis, M. Koch, Appl. Phys. Lett. 88, 102102 (2006)

    Article  ADS  Google Scholar 

  30. J.O. Lee, J.J. Kim, S.K. Kim, Journal of the Korean Physical Society 39, S56–S58 (2001)

    Google Scholar 

  31. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R. Lustig, R.E. Richardson, N.G. Tassi, Nat. Mater. 2, 338–342 (2003)

    Article  ADS  Google Scholar 

  32. G. Lu, P. Maragakis, E. Kaxiras, Nano Lett. 5, 897–900 (2005)

    Article  ADS  Google Scholar 

  33. Y. Ma, S.R. Ali, A.S. Dodoo, H. He, Enhanced sensitivity for biosensors: multiple functions of DNA-wrapped single-walled carbon nanotubes in self-doped polyaniline nanocomposites. J. Phys. Chem. B 110(33), 16359–16365 (2006)

    Article  Google Scholar 

  34. P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287, 1801–1839 (2000)

    Article  ADS  Google Scholar 

  35. X. Cui, M. Freitag, R. Martel, L. Brus, P. Avouris, Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett. 3(6), 783–787 (2003)

    Article  ADS  Google Scholar 

  36. F. Léonard, J. Tersoff, Phys. Rev. Lett. 84, 4693 (2000)

    Article  ADS  Google Scholar 

  37. J. Chen, C. Klinke, A. Afzali-Ardakani, P. Avouris, Charge-transfer doped and self-aligned carbon nanotube transistors. Appl. Phys. Lett. 86, 108–123 (2005)

    Google Scholar 

  38. A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Ballistic carbon nanotube transistors. Nature 424, 654–657 (2003)

    Article  ADS  Google Scholar 

  39. S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P.L. McEuen, High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2(8), 869–872 (2002)

    Article  ADS  Google Scholar 

  40. Y.-M. Lin, J. Appenzeller, Z. Chen, Z.-G. Chen, H.-M. Cheng, P. Avouris, High-performance dual-gate carbon nanotube FETs with 40-nm gate length. ELECTRON DEVICE LETTERS 26(11) (2005)

  41. Y. Wu, S.K.M. Nalluri, R.M. Young, M.D. Krzyaniak, E.A. Margulies, J. Fraser Stoddart, M.R. Wasielewski, Charge and spin transport in an organic molecular square. Angew. Chem. Int. Ed. 54(41), 11971–11977 (2015)

    Article  Google Scholar 

  42. S. Abdalla, F. Marzouki, Concepts on charge transfer through naturally vibrating DNA molecule. Gene 509(1), 24–37 (2012)

    Article  Google Scholar 

  43. S. Abdalla, S.D. Jastaniah, Electrical conduction of calf-thymus DNA molecules. International Journal of Nano and Biomaterials 2(1–5), 299–306 (2009)

    Article  Google Scholar 

  44. S. Abdalla, F.M. Al-Marzouki, A.A. Al-Ghamdi, Robust electrical contacts to organic molecules (DNA) via organic covalent bond. MITTEILUNGEN KLOSTERNEUBURG 64, 12 (2014)

    Google Scholar 

  45. S. Abdalla, Electric breakdown through nano dielectric films. Editorial J Material Sci. Eng 1, 3 (2012)

    Google Scholar 

  46. K. Forinash, A.R. Bishop, P. Lomdahl, Nonlinear dynamics in a double chain model of DNA, chapter nonlinearity with disorder of the series. Springer Proceedings in Physics 67, 190–202

  47. A.A. Kletsova, E.G. Glukhovskoya, A.S. Chumakova, J.V. Ortiz, Ab initio electron propagator calculations of transverse conduction through DNA nucleotide bases in 1-nm nanopore corroborate third generation sequencing. Biochim. Biophys. Acta Gen. Subj. 1860(A), 140–145 (2016)

    Article  Google Scholar 

  48. L. Xiang, J.L. Palma, C. Bruot, V. Mujica, M.A. Ratner, N. Tao, Intermediate tunnelling–hopping regime in DNA charge transport. Nat. Chem. 7, 221–226 (2015)

    Article  Google Scholar 

  49. D.T. Odom, E.A. Dill, J.K. Barton, Robust charge transport in DNA double crossover assemblies. Chem. Biol. 7(7), 475–481 (2000)

    Article  Google Scholar 

  50. E.L. Albuquerque, P.W. Mauriz, D.A. Moreira, Electronic transport in double-strand DNA segments. J. Phys. Conf. Ser. 100, 052060 (2008)

    Article  ADS  Google Scholar 

  51. D. Mishra, S. Pal, Ionization potential and structure relaxation of adenine, thymine, guanine and cytosine bases and their base pairs: a quantification of reactive sites. Journal of Molecular Structure: THEOCHEM 902(1–3), 96–102 (2009)

    Article  Google Scholar 

  52. Y. Li, J.M. Artés, J. Hihath, Long-range charge transport in adenine-stacked RNA:DNA hybrids. Small 12(4), 432–437 (2016 Jan). doi:10.1002/smll.201502399 Epub 2015 Nov 24

  53. S. Abdalla, Electrical conduction through DNA molecule. Progress in Biophysics and Molecular Biology 106(3), 485–497 (2011)

    Article  Google Scholar 

  54. W.A. Flavahan, Y. Drier, B.B. Liau, S.M. Gillespie, A.S. Venteicher, A.O. Stemmer-Rachamimov, M.L. Suvà, B.E. Bernstein, Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–125 (2016)

    Article  ADS  Google Scholar 

  55. O. Lopatynska, A. Lopatynskyi, V. Chegel, L. Poperenko, Theoretical understanding of the SPR sensor response on the protein adsorption. JJAP Conf. Proc. 4(011501) (2016). doi:10.7567/JJAPCP.4.011501

  56. P. Sungjun, W. Gunuk, C. Byungjin, K. Yonghun, S. Sunghoon, J. Yongsung, Y. Myung-Han, L. Takhee, Nat. Nanotechnol., 7,438–7,442 (2012). doi:10.1038/nnano.2012.81 4

  57. M. Radosavljević, S. Heinze, J. Tersoff, P. Avouris, Drain voltage scaling in carbon nanotube transistors. Appl. Phys. Lett. 83, 2435

  58. L. Bogner, Z. Yang, M. Corso, R. Fitzner, P. Bäuerle, K.J. Franke, J.I. Pascual, P. Tegeder, Electronic structure and excited state dynamics in a dicyanovinyl-substituted oligothiophene on Au (111). Phys. Chem. Chem. Phys. 17, 27118–27126 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by the NSTIP Strategic Technologies Program (MAAREFAH) in the Kingdom of Saudi Arabia—Project No. (12-NAN2270-03); the authors also acknowledge with thanks the Science and Technology Unit, King Abdulaziz University, for the technical support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, S., Al-Marzouki, F.M. & Al-Ghamdi, A.A. Field Effect Transistor Using Carbon Nanotubes and DNA as Electrical Gate. Braz J Phys 47, 34–41 (2017). https://doi.org/10.1007/s13538-016-0473-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-016-0473-9

Keywords

Navigation