Skip to main content
Log in

Interactions of Fullerene (C60) and its Hydroxyl Derivatives with Lipid Bilayer: A Coarse-Grained Molecular Dynamics Simulation

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Coarse-grained molecular dynamic simulations were employed to study the interactions of fullerene (C60) and its hydroxyl derivatives (C60(OH)n, n = 4, 5, 6, 8, 12, and 16) with a lipid bilayer composed of dipalmitoylphosphatidylcholine molecules. It was found that the C60 moves towards the center of the bilayer and laid between central and peripheral regions of the bilayer. The potential mean force was calculated to estimate free energy profile when pulling the fullerene from its initial position to the center of the bilayer using an umbrella sampling method. Results showed that the hydrophobic region of the membrane acts as a barrier to transport a nonpolar C60 molecule through the bilayer. This makes a deep minimum in the free energy profile between the center and head regions of membrane. Various numbers of polar functional groups (–OH) were then used to make derivatives of fullerene and change the hydrophilic of the molecule. It was found that optimal number of hydroxyl groups to facilitate the transportation of C60(OH)n through the bilayer is 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Zhu, D.I. Schuster, M.E. Tuckerman, Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Biochem. 42, 1326–1333 (2003)

    Google Scholar 

  2. S. Bosi, T.D. Ros, G. Spalluto, J. Balzarini, M. Prato, Synthesis and anti-HIV properties of new water-soluble bis-functionalized[60]fullerene derivatives. Bioorg. Med. Chem. Lett. 13, 4437–4440 (2003)

    Article  Google Scholar 

  3. R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W. Huck, G.K. Bonn, R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W. Huck, G.K. Bonn, Medicinal applications of fullerenes. Int J Nanomed 2, 639–649 (2007)

    Google Scholar 

  4. A.W. Jensen, S.R. Wilson, D.I. Schuster, Review article: biological applications of fullerenes. Bioorg. Med. Chem. 4, 767–779 (1996)

    Article  Google Scholar 

  5. S. Bosi, T.D. Ros, G. Spalluto, M. Prato, Fullerene derivatives: an attractive tool for biological applications. Eur. J. Med. Chem. 38, 913 (2003)

    Article  Google Scholar 

  6. C. Chiu, R. DeVane, M.L. Klein, W. Shinoda, P.B. Moore, S.N. Nielsen, Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes. J. Phys. Chem. B 114, 6394–6400 (2010)

    Article  Google Scholar 

  7. R. DeVane, A. Jusufi, W. Shinoda, C. Chiu, S.O. Nielsen, P.B. Moore, M.L. Klein, Parametrization and application of a coarse grained force field for benzene/fullerene interactions with lipids. J. Phys. Chem. B 114, 16364–16372 (2010)

    Article  Google Scholar 

  8. D.Y. Lyon, L.K. Adams, J.C. Falkner, P.J.J. Alvarez, Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ. Sci. Technol. 40, 4360–4366 (2006)

    Article  ADS  Google Scholar 

  9. C.M. Sayes, J.D. Fortner, W. Guo, D. Lyon, A.M. Boyd, K.D. Ausman, Y.J. Tao, B. Sitharaman, L.J. Wilson, J.B. Hughes, J.L. West, V.L. Colvin, The differential cytotoxicity of water-soluble fullerenes. Nano Lett. 4, 1881–1887 (2004)

    Article  ADS  Google Scholar 

  10. Y. Chang, C. Chunying, Y. Chang, C.C. Chunying, M. Zhen, X. Huan, J. Li, Y. Yaxin, X. Hui, Z. Gengmei, Z. Feng, C. Yuliang, F. Zhifang, H. Xiaohong, C. Dong, W. Long, W. Chen, W. Taotao, In situ observation of C60(C(COOH)2)2 interacting with living cells using fluorescence microscopy. Chin. Sci. Bull. 51, 1060–1064 (2006)

    Article  Google Scholar 

  11. L. Li, H. Davande, D. Bedrov, G.D. Smith, A molecular dynamics simulation study of C60 fullerenes inside a dimyristoylphosphatidylcholine lipid bilayer. J. Phys. Chem. B 111, 4067–4072 (2007)

    Article  Google Scholar 

  12. R. Qiao, A.P. Roberts, A.S. Mount, S.J. Klaine, P.C. Ke, Translocation of C60 and its derivatives across a lipid bilayer. Nano Letter 7, 614–619 (2007)

    Article  ADS  Google Scholar 

  13. D. Bedrov, G.D. Smith, H. Davande, L. Li, Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. J. Phys. Chem. B 112, 2078–2084 (2008)

    Article  Google Scholar 

  14. M.S.P. Sansom, K.A. Scott, P.J. Bond, Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem. Soc. Trans. 36(1), 27–32 (2008)

    Article  Google Scholar 

  15. S.O. Nielsen, C.F. Lopez, G. Srinivas, M.L. Klein, Coarse grain models and the computer simulation of soft materials. J. Phys.: Condens. Matter 16, R481–R512 (2004)

    ADS  Google Scholar 

  16. R.S.G. D’Rozario, C.L. Wee, E.J. Wallace, M.S.P. Sansom, The interaction of C60 and its derivatives with a lipid bilayer via molecular dynamics simulations. Nanotechnol. 20, 102–115 (2009)

    Google Scholar 

  17. J. Wong-Ekkabut, S. Baoukina, W. Triampo, I.M. Tang, D.P. Tieleman, L. Monticelli, Computer simulation study of fullerene translocation through lipid membranes. Nat. Nanotechnol. 3, 363–368 (2008)

    Article  ADS  Google Scholar 

  18. S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. Vries, The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007)

    Article  Google Scholar 

  19. S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. van der Spoel, B. Hess, Erik Lindahl, GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinforma. 29(7), 845–854 (2013)

    Google Scholar 

  20. D.J. Evans, B.L. Holian, The Nose–Hoover thermostat. J. Chem. Phys. 85, 4069–4074 (1985)

    Article  ADS  Google Scholar 

  21. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  ADS  Google Scholar 

  22. W. Humphrey, A. Dalke, K. Schulten, VMD—visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996)

    Article  Google Scholar 

  23. S. Kumar, J.M. Rosenberg, D. Bouzida, R.H. Swendsen, P.A. Kollman, The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992)

    Article  Google Scholar 

  24. P.S. Redmill, S.L. Capps, P.T. Cummings, C. McCabe, A molecular dynamics study of the Gibbs free energy of solvation of fullerene particles in octanol and water. Carbon 47, 2865–2874 (2009)

    Article  Google Scholar 

  25. B. Czerwinski, L. Rzeznik, K. Stachura, R. Paruch, B.J. Garrison, Z. Postawa, Applications of fullerene beams in analysis of thin layers. Vacuum 82, 1120–1123 (2008)

    Article  Google Scholar 

  26. K. Tappura, O. Cramariuc, T.L.J. Toivonen, T.I. Hukka, T.T. Rantala, Computational analysis of the conformations of a doubly linked porphyrin–fullerene dyad. Chem. Phys. Lett. 424, 156–161 (2006)

    Article  ADS  Google Scholar 

  27. S. Durdagi, T. Mavromoustakos, N. Chronakis, M.G. Papadopoulos, Computational design of novel fullerene analogues as potential HIV-1 PR inhibitors: analysis of the binding interactions between fullerene inhibitors and HIV-1 PR residues using 3D QSAR, molecular docking and molecular dynamics simulations. Bioorg. Med. Chem. 16, 9957–9974 (2008)

    Article  Google Scholar 

  28. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University, USA, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dariush Mohammadyani or Amir Amani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadyani, D., Modarress, H., To, A.C. et al. Interactions of Fullerene (C60) and its Hydroxyl Derivatives with Lipid Bilayer: A Coarse-Grained Molecular Dynamics Simulation. Braz J Phys 44, 1–7 (2014). https://doi.org/10.1007/s13538-013-0172-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-013-0172-8

Keywords

Navigation