Skip to main content
Log in

Temperature-Dependent Current–Voltage (I–V) and Capacitance–Voltage (C–V) Characteristics of Ni/Cu/n-InP Schottky Barrier Diodes

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The current-voltage (I–V) and capacitance-voltage (C–V) characteristics of Ni/Cu/n-InP Schottky barrier diodes are studied over a wide temperature range, from 210 K to 420 K. The I–V characteristics display anomalous thermal behavior. The apparent barrier height decays, and the ideality factor grows at low temperatures, and the series resistances resulting from Cheung’s and Norde’s procedures are markedly temperature dependent. The nonlinearity of the Richardson plot and the strong temperature dependence of the Schottky-barrier parameters indicate that the interface is spatially inhomogeneous. Plots of the zero-bias barrier height as a function of 1/(2kT) points to a Gaussian distribution of barrier heights with 0.90 eV mean height and 0.014 eV standard deviation. When this distribution is accounted for, a Richardson of 6.5 A/(cm K)2 results, relatively close to the 9.4/(cm K)2 predicted by theory. We conclude that, combined with a Gaussian distribution of barrier heights, the thermionic-emission mechanism explains the temperature-dependent I–V and C–V characteristics of the studied Schottky-barrier diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.M. Smith, P.C. Chao, K.H.G. Duh, L.F. Lester, B.R. Lee, Electron. Lett. 22, 781 (1986)

    Article  ADS  Google Scholar 

  2. S.Y. Wang, S.H. Lin, Y.M. Huang, Appl. Phys. Lett. 51, 83 (1987)

    Article  ADS  Google Scholar 

  3. M. Razeghi, R. Blondeau, M. Krakowski, B. de Cremoux, J.P. Duchemin, F. Lozes, M. Martinot, M.A. Bensoussan, Appl. Phys. Lett. 50, 230 (1987)

    Article  ADS  Google Scholar 

  4. H.C. Card, E.H. Rhoderick, J. Phys. D: Appl. Phys. 7, 1589 (1971)

    Article  ADS  Google Scholar 

  5. P.G. McCafferty, A. Sellai, P. Dawson, H. Elabd, Solid-State Electron. 39, 583 (1996)

    Article  ADS  Google Scholar 

  6. S. Chand, J. Kumar, Appl. Phys. A. 65, 497 (1996)

    Article  ADS  Google Scholar 

  7. E.H. Rhoderick, R.H. Williams, Metal–semiconductor contacts (Clarendon, Oxford, 1978)

    Google Scholar 

  8. L. Rideout, Thin Solid Films 48, 261 (1978)

    Article  ADS  Google Scholar 

  9. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  10. Z. Horvath, J. Appl. Phys. 63, 976 (1988)

    Article  ADS  Google Scholar 

  11. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522 (1991)

    Article  ADS  Google Scholar 

  12. R.T. Tung, Phys. Rev. B 45, 13504 (1992)

    Article  ADS  Google Scholar 

  13. S. Chand, J. Kumar, J. Appl. Phys. 82, 5005 (1997)

    Article  ADS  Google Scholar 

  14. J.H. Werner, H.H. Guttler, J. Appl. Phys. 73, 1315 (1993)

    Article  ADS  Google Scholar 

  15. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, Solid-State Electron. 29, 633 (1986)

    Article  ADS  Google Scholar 

  16. A. Gumus, A. Trust, N. Yalcin, J. Appl. Phys. 91, 245 (2002)

    Article  ADS  Google Scholar 

  17. I. Dokme, S. Altindal, Semicond. Sci. Technol. 21, 1053 (2006)

    Article  ADS  Google Scholar 

  18. E. Dobrocka, J. Osvald, Appl. Phys. Lett. 65, 575 (1994)

    Article  ADS  Google Scholar 

  19. P.P. Hankare, P.A. Chate, P.V. Chavan, D.J. Sahte, J. Alloys Compd. 461, 623 (2008)

    Article  Google Scholar 

  20. M.M. El-Nahass, K.F. Abd El-Rahman, J. Alloys Compd. 430, 194 (2007)

    Article  Google Scholar 

  21. K. Akkilic, F. Yakuphanoglu, Microelectron. Eng. 85, 1826 (2008)

    Article  Google Scholar 

  22. H. Cetin, E. Ayyildiz, Semicond. Sci. Technol. 20, 625 (2005)

    Article  ADS  Google Scholar 

  23. F.E. Cimilli, H. Efeoglu, M. Saglam, A. Turut, J. Mater. Sci. Mater. Electron. 20, 105 (2009)

    Article  Google Scholar 

  24. M. Soylu, B. Abay, Microelectron. Eng. 86, 88 (2009)

    Article  Google Scholar 

  25. S. Shankar Naik, V. Rajagopal Reddy, Superlattice. Microstruct. 48, 330 (2010)

    Article  ADS  Google Scholar 

  26. D. Subba Reddy, M. Siva Pratap Reddy, V. Rajagopal Reddy, Optoelectron. Adv. Mater. Rapid Commun. 5, 448 (2011)

    Google Scholar 

  27. S. Chand, J. Kumar, J. Appl. Phys. 80, 288 (1996)

    Article  ADS  Google Scholar 

  28. S. Zhu, C. Detavernier, R.L. Van Meirhaeghe, F. Cardon, G.P. Ru, X.P. Qu, B.Z. Li, Solid-State Electron. 44, 1807 (2000)

    Article  ADS  Google Scholar 

  29. S. Bandyopadhyay, A. Battacharyya, S.K. Sen, J. Appl. Phys. 85, 3671 (1999)

    Article  ADS  Google Scholar 

  30. Z.J. Horvath, Solid-State Electron. 39, 176 (1996)

    Article  ADS  Google Scholar 

  31. R.F. Schmitsdrof, T.U. Kampen, W. Monch, J. Vac. Technol. B 15, 1221 (1997)

    Article  Google Scholar 

  32. R.F. Schmitsdrof, T.U. Kampen, W. Monch, Surf. Sci. 324, 249 (1997)

    Article  Google Scholar 

  33. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  ADS  Google Scholar 

  34. M. Saglam, A. Ates, B. Guzeldir, A. Astam, M.A. Yildirim, J. Alloys Compd. 184, 570 (2009)

    Article  Google Scholar 

  35. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  ADS  Google Scholar 

  36. V.W.L. Chin, M.A. Green, J.W.V. Storey, J. Appl. Phys. 68, 3470 (1990)

    Article  ADS  Google Scholar 

  37. S. Chand, J. Kumar, Appl. Phys. A 63, 171 (1996)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Kyungpook National University Research Fund 2012, 2008 Brain Korea 21 (BK21), the National Research Foundation of Korea grants funded by MEST (2012–0005671, 2012–0000627), R&D program of MKE/KETEP (2011101050017B), WCU (World Class University) program (grant R33-10055) and IT R&D program of MKE/KEIT (10038766), and the IT R&D program of MKE/KEIT (10038766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Siva Pratap Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munikrishana Reddy, Y., Nagaraj, M.K., Siva Pratap Reddy, M. et al. Temperature-Dependent Current–Voltage (I–V) and Capacitance–Voltage (C–V) Characteristics of Ni/Cu/n-InP Schottky Barrier Diodes. Braz J Phys 43, 13–21 (2013). https://doi.org/10.1007/s13538-013-0120-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-013-0120-7

Keywords

Navigation