Skip to main content
Log in

The Influence of Hyperons and Strong Magnetic Field in Neutron Star Properties

  • Particles and Fields
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Neutron stars are among of the most exotic objects in the universe and constitute a unique laboratory to study nuclear matter above the nuclear saturation density. In this work, we study the equation of state (EoS) of the nuclear matter within a relativistic model subject to a strong magnetic field. We then apply this EoS to study and describe some of the physical characteristics of neutron stars, especially the mass–radius relation and chemical compositions. To study the influence of the magnetic field and the hyperons in the stellar interior, we consider altogether four solutions: two different magnetic field to obtain a weak and a strong influence; and two configurations: a family of neutron stars formed only by protons, electrons, and neutrons and a family formed by protons, electrons, neutrons, muons, and hyperons. The limit and the validity of the results found are discussed with some care. In all cases, the particles that constitute the neutron star are in β equilibrium and zero total net charge. Our work indicates that the effect of a strong magnetic field has to be taken into account in the description of magnetars, mainly if we believe that there are hyperons in their interior, in which case the influence of the magnetic field can increase the mass by more than 10 %. We have also seen that although a magnetar can reach 2.48 M , a natural explanation of why we do not know pulsars with masses above 2.0 M arises. We also discuss how the magnetic field affects the strangeness fraction in some standard neutron star masses, and to conclude our paper, we revisit the direct Urca process related to the cooling of the neutron stars and show how it is affected by the hyperons and the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. This can be justified since the Fermi temperature of the neutron stars is very high compared to its own temperature [16].

  2. The same holds for the TOV solution showed.

  3. We have named co and bo after their relation with the collapse and the bound state, respectively.

  4. We do not use this modified TOV equations since they imply the existence of a magnetic monopole.

  5. Indeed, the Ξ0 hyperon appears in an insignificant quantity \(Y_{\Xi^{0}} = 10^{-5}\) at 1.2fm  − 3.

References

  1. N.K. Glendenning, Compact Stars (Springer, New York, 2000)

    Book  MATH  Google Scholar 

  2. S.L. Shapiro, S.A. Teukolsk, Black Holes, White Dwarfs and Neutron Stars (Willey, New Jersey, 1983)

    Book  Google Scholar 

  3. M. Camenzind, Compact Objects in Astrophysics (Springer, Berlin, 2007)

    Google Scholar 

  4. R. Duncan, C. Thompson, Mon. Not. R. Astron. Soc. 275, 255 (1995)

    ADS  Google Scholar 

  5. S. Pal, D. Bandyopadhyay, S. Chakrabarty, Phys. Rev. Lett. 78, 2898 (1997)

    Article  ADS  Google Scholar 

  6. S. Pal, D. Bandyopadhyay, S. Chakrabarty, J. Phys. G: Nucl. Part. Phys. 25, L117 (1999)

    Article  ADS  Google Scholar 

  7. J.M. Lattimer et al., Phys. Rev. Lett. 66, 2701 (1991)

    Article  ADS  Google Scholar 

  8. A. Rabhi, C. Providencia, J. Da Providencia, J. Phys. G: Nucl. Part. Phys. 35, 125201 (2008)

    Article  ADS  Google Scholar 

  9. A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)

    Article  ADS  Google Scholar 

  10. D. Griffiths, Introduction to Elementary Particles (Wiley, Weinheim, 2008)

    Google Scholar 

  11. M.G. Paoli, D.P. Menezes, Eur. Phys. J. A 46, 413 (2010)

    Article  ADS  Google Scholar 

  12. N.K. Glendenning, S.A. Moszkowski, Phys. Rev. Lett. 67, 2414 (1991)

    Article  ADS  Google Scholar 

  13. A. Rabhi et al., J. Phys. G: Nucl. Part. Phys. 36, 115204 (2009)

    Article  ADS  Google Scholar 

  14. K. Huang, Introduction to Statistical Physics (Taylor & Francis, London, 2001)

    MATH  Google Scholar 

  15. Q. Peng, H. Tong, Mon. Not. R. Astron. Soc. 378, 159 (2007)

    Article  ADS  Google Scholar 

  16. R.R. Silbar, S. Reddy, Am. J. Phys. 72, 7 (2004)

    Article  Google Scholar 

  17. D.P. Menezes et al., Phys. Rev. C 80, 065805 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 33, 374 (1939)

    Article  ADS  Google Scholar 

  19. G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  20. A. Rabhi, C. Providencia, J. Phys. G: Nucl. Part. Phys. 37, 075102 (2010)

    Article  ADS  Google Scholar 

  21. Xu-Guang Huang et al., Phys. Rev. D 81, 045015 (2010)

    Article  ADS  Google Scholar 

  22. M. Malheiro et al., Int. J. Mod. Phys. D 16 489 (2007)

    Article  ADS  Google Scholar 

  23. C.E. Rhoades, R. Ruffini, Phys. Rev. Lett. 32, 324 (1974)

    Article  ADS  Google Scholar 

  24. P.B. Demorest et al., Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  25. J. Cottam, F. Paerels, M. Mendez, Nature 420, 51 (2002)

    Article  ADS  Google Scholar 

  26. D. Sanwal et al., Astrophys. J. Lett. 574, 61 (2002)

    Article  ADS  Google Scholar 

  27. R. Cavagnoli, D.P. Menezes, C. Providencia, Phys. Rev. C. 84, 065810 (2011)

    Article  ADS  Google Scholar 

  28. N.K. Glendenning, Astrophys. J. 293, 470 (1985)

    Article  ADS  Google Scholar 

  29. Z.X. Ma, Z.G. Dai, T. Lu, Astron. Astrophys. 366, 532 (2001)

    Article  ADS  Google Scholar 

  30. J.L. Zdunik et al., Astron. Astrophys. 416, 1013 (2004)

    Article  ADS  Google Scholar 

  31. H. Dapo, B.J. Schaefer, J. Wambach, Phys. Rev. C 81, 035803 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CNPq and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Lopes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, L.L., Menezes, D.P. The Influence of Hyperons and Strong Magnetic Field in Neutron Star Properties. Braz J Phys 42, 428–436 (2012). https://doi.org/10.1007/s13538-012-0093-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-012-0093-y

Keywords

Navigation