Skip to main content

Advertisement

Log in

Depth-Sensing Indentation on REBa2Cu3O7−δ Single Crystals Obtained from Xenotime Mineral

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

A natural mixture of heavy rare-earth oxides extracted from xenotime mineral have been used to prepare large single crystals of the high-temperature REBa2Cu3O7−δ superconductor, grown using the CuO–BaO self-flux method. Its mechanical properties along the ab-plane were characterized using instrumented indentation. Hardness and elastic moduli were measured by the Oliver and Pharr method, which yielded 7.4 ± 0.2 GPa and the range 135–175 GPa at small depths, respectively. Increased loads promote the nucleation of lateral cracks, which reduce hardness and measured elastic modulus, as indicated by instrumented indentation at higher loads. The indentation fracture toughness, estimated by measuring the radial crack length from cube corner indentations at various loads, was found to be 0.8 ± 0.2 MPa m1/2. The observed slip systems of REBa2Cu3O7−δ single crystals were [100](001) and [010](001), the same as for YBa2Cu3O7−δ single crystals. The initial stages of deformation and fracture in the indentation process were investigated. The hardness and elastic modulus are not strongly modified by the crystallographic orientation in the ab-plane. This was interpreted in terms of resolved shear stresses in the active slip systems. Evidence of cracking along the {100} and {110} planes on the ab-plane was observed. In conclusion, the mechanical properties of REBa2Cu3O7−δ single crystals prepared from xenotime are equivalent to those of YBa2Cu3O7−δ single crystals from conventional rare-earth oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Critical Materials Strategy (2010) 97, US Department of Energy

  2. C.R. Neary, D.E. Highley, in Rare Earth Element Geochemistry, ed. by P. Henderson (Elsevier, Amsterdam, 1984)

    Google Scholar 

  3. P. Rodrigues Jr., A.R. Jurelo, J. Flemming, Mod. Phys. Lett. 13, 485 (1999)

    Article  ADS  Google Scholar 

  4. A.R. Jurelo, P. Rodrigues Jr., A.E. Carrillo, T. Puig, X. Obradors, J. Barbosa, Physica C 399, 87 (2003)

    Article  ADS  Google Scholar 

  5. A.R. Jurelo, J. Flemming, F.C. Serbena, C.R. Carubelli, P. Rodrigues Jr., C.E. Foerster, F.T. Dias, J. Cryst. Growth 311, 3539 (2009)

    Article  ADS  Google Scholar 

  6. L.F. Schneemeyer, J.V. Waszczak, T. Siegrist, R.B. van Dover, L.W. Rupp, B. Batlogg, R.J. Cava, D.W. Murphy, Nature 328, 601 (1987)

    Article  ADS  Google Scholar 

  7. Y. Wang, L.W.M. Schreurs, P. Van der Linden, Y. Li, P. Bennema, J. Cryst. Growth 106, 487 (1990)

    Article  ADS  Google Scholar 

  8. F. Tancret, I. Monot, F. Osterstock, Mater. Sci. Eng. A 298, 268 (2001)

    Article  Google Scholar 

  9. T. Miyamoto, K. Nagashima, N. Sakai, M. Murakami, Physica C 340, 41 (2000)

    Article  ADS  Google Scholar 

  10. N. Sakai, S.J. Seo, K. Inoue, T. Miyamoto, M. Murakami, Physica C 335, 107 (2000)

    Article  ADS  Google Scholar 

  11. L.K. Markov, T.S. Orlova, N.N. Peschanskaya, B.I. Smirnov, Y.P. Stepanov, V.V. Shpeizman, Phys. Solid State 45, 1629 (2003)

    Article  ADS  Google Scholar 

  12. J.J. Roa, X.G. Capdevila, M. Martínez, F. Espiell, M. Segarra, Nanotechnology 18, 385701 (2007)

    Article  ADS  Google Scholar 

  13. F. Yeh, K.W. White, J. Appl. Phys. 70, 318 (1991)

    Article  Google Scholar 

  14. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  15. D.S. Harding, W.C. Oliver, G.M. Pharr, Mater. Res. Soc. Symp. Proc. 356, 663 (1995)

    Article  Google Scholar 

  16. R.P. Vasquez, B.D. Hunt, M.C. Foote, Appl. Phys. Lett. 53, 2692 (1988)

    Article  ADS  Google Scholar 

  17. R. Argyropoulou, M. Ochsenkühn-Petropoulou, C. Dounis, P. Karaboulis, A. Altzumailis, K.M. Ochsenkühn, J. Mater. Process. Technol. 181, 2 (2007)

    Article  Google Scholar 

  18. J.D. Tatum, J.W.H. Tsai, M. Chopra, S.W. Chan, J.M. Phillips, S.Y. Hou, J. Appl. Phys. 77, 6370 (1995)

    Article  ADS  Google Scholar 

  19. M. Verwerft, D.K. Dijken, J.T. De Hosson, A.C. Van der Steen, Phys. Rev. B 50, 3271 (1994)

    Article  ADS  Google Scholar 

  20. J. Zheng, Q. Li, D. Feng, S. Ding, S. Yu, G. Shen, F. Liu, L. Zhou, H. Mou, J. Appl. Phys. 72, 4634 (1992)

    Article  ADS  Google Scholar 

  21. W.D. Nix, H. Gao, J. Mech. Phys. Solids 46, 411 (1998)

    Article  ADS  MATH  Google Scholar 

  22. T. Chudoba, P. Schwaller, R. Rabe, J.-M. Breguet, J. Michler, Phil. Mag. 86, 5265 (2006)

    Article  ADS  Google Scholar 

  23. R.F. Cook, T.R. Dinger, D.R. Clarke, Appl. Phys. Lett. 51, 454 (1987)

    Article  ADS  Google Scholar 

  24. A.S. Raynes, S.W. Freiman, F.W. Gayle, D.L. Kaiser, J. Appl. Phys. 70, 5254 (1991)

    Article  ADS  Google Scholar 

  25. L.B.L.G. Pinheiro, A.R. Jurelo, F.C. Serbena, P. Rodrigues Jr., C.E. Foerster, A.L. Chinelatto, Physica C 470, 465 (2010)

    Article  ADS  Google Scholar 

  26. C.E. Foerster, E. Lima, P. Rodrigues Jr., F.C. Serbena, C.M. Lepienski, M.P. Cantão, A.R. Jurelo, X. Obradors, Braz. J. Phys. 38, 341 (2008)

    Article  Google Scholar 

  27. L.B.L.G. Pinheiro, F.C. Serbena, C.E. Foerster, P. Rodrigues Jr., A.R. Jurelo, A.L. Chinelatto, J.L.P. Júnior, Physica C 471, 179 (2011)

    Article  ADS  Google Scholar 

  28. P. Azambuja, P. Rodrigues Jr., A.R. Jurelo, F.C. Serbena, C.E. Foerster, R.M. Costa, G.B. Souza, C.M. Lepienski, A.L. Chinelatto, Braz. J. Phys. 39, 638 (2009)

    Article  Google Scholar 

  29. I.A. Parinov, Microstructure and Properties of High-Temperature Superconductors. (Springer-Verlag Berlin, 2007)

  30. C.E. Foerster, F.C. Serbena, A.R. Jurelo, T.R. Ferreira, P. Rodrigues Jr., A.L. Chinelatto, IEEE T. Appl. Supercon. 21, 52 (2011)

    Article  ADS  Google Scholar 

  31. A.C. Brookes, J.B. O'Neill, B.A.W. Redfern, Proc. Roy. Soc. Lond. A. 322, 73 (1991)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was partially financed by the CNPq Brazilian Agency under contract no. 475347/01-3. We acknowledge Dr. A. L. Chinelatto for SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Carlos Serbena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serbena, F.C., Foerster, C.E., Jurelo, A.R. et al. Depth-Sensing Indentation on REBa2Cu3O7−δ Single Crystals Obtained from Xenotime Mineral. Braz J Phys 42, 330–339 (2012). https://doi.org/10.1007/s13538-012-0088-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-012-0088-8

Keywords

Navigation