Skip to main content
Log in

Automatic error correction using adaptive weighting for vessel-based deformable image registration

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

In this paper, we extend our previous work on deformable image registration to inhomogenous tissues. Inhomogenous tissues include the tissues with embedded tumors, which is common in clinical applications. It is a very challenging task since the registration method that works for homogenous tissues may not work well with inhomogenous tissues. The maximum error normally occurs in the regions with tumors and often exceeds the acceptable error threshold. In this paper, we propose a new error correction method with adaptive weighting to reduce the maximum registration error. Our previous fast deformable registration method is used in the inner loop. We have also proposed a new evaluation metric average error of deformation field (AEDF) to evaluate the registration accuracy in regions between vessels and bifurcation points. We have validated the proposed method using liver MR images from human subjects. AEDF results show that the proposed method can greatly reduce the maximum registration errors when compared with the previous method with no adaptive weighting. The proposed method has the potential to be used in clinical applications to reduce registration errors in regions with tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang X, Ren J, Abdalbari A, Green M. Vessel-based fast deformable registration with minimal strain energy. Biomed Eng Lett. 2016;6(1):47–55.

    Article  Google Scholar 

  2. Canadian Cancer Society. http://www.cancer.ca/en/cancer-information/cancer-101/cancer-statistics-at-a-glance/?region=on. Retrieved on 3 Aug 2014.

  3. Ljungberg M, Strand SE. Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: a Monte Carlo study. J Nucl Med. 1991;32(6):1278–84.

    Google Scholar 

  4. Trivedi A, Basu S, Mitra K. Temporal analysis of reflected optical signals for short pulse laser interaction with nonhomogeneous tissue phantoms. J Quant Spectrosc Radiat Transf. 2005;93(1–3):337–48.

    Article  Google Scholar 

  5. Murphy K, van Ginneken B, Reinhardt JM, Kabus S, Ding K, Deng X, Cao K, Du K, Christensen GE, Garcia V, Vercauteren T, Ayache N, Commowick O, Malandain G, Glocker B, Paragios N, Navab N, Gorbunova V, Sporring J, de Bruijne M, Han X, Heinrich MP, Schnabel JA, Jenkinson M, Lorenz C, Modat M, McClelland JR, Ourselin S, Muenzing SE, Viergever MA, De Nigris D, Collins DL, Arbel T, Peroni M, Li R, Sharp GC, Schmidt-Richberg A, Ehrhardt J, Werner R, Smeets D, Loeckx D, Song G, Tustison N, Avants B, Gee JC, Staring M, Klein S, Stoel BC, Urschler M, Werlberger M, Vandemeulebroucke J, Rit S, Sarrut D, Pluim JP. Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans Med Imaging. 2011;30:1901–20.

    Article  Google Scholar 

  6. Han X. Feature-constrained nonlinear registration of lung CT images. Med Image Anal Clinic Grand Chall. 2010;63–72.

  7. Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: a survey. IEEE Trans Med Imaging. 2013;32(7):1153–9.

    Article  Google Scholar 

  8. Zitova B, Flusser J. Image registration methods: a survey. Image Vis Comput. 2003;21:977–1000.

    Article  Google Scholar 

  9. Hill D, Batchelor P, Holden M, Hawkes D. Medical image registration. Phys Med Biol. 2001;46(3):R1–45.

    Article  Google Scholar 

  10. Xia M, Liu B. Image registration by super curves. IEEE Trans Image Process. 2004;13(5):720–32.

    Article  MathSciNet  Google Scholar 

  11. Ren J. Adaptive deformable image registration of in-homogenous tissues. SPIE Med Imagin. 2015.

  12. Baumhauer M, Feuerstein M, Meinzer HP, Rassweiler J. Navigation in endoscopic soft tissue surgery: perspectives and limitations. J Endourol. 2008;22(4):751–66.

    Article  Google Scholar 

  13. Huang X, Bari A, Zaheer S, Looi T, Ren J, Drake J. 3D curve constrained deformable registration using a neuro-fuzzy transformation model. Conf Proc IEEE Eng Med Biol Soc (EMBC2012). 2012;5294–7.

  14. Holden M. A review of geometric transformations for nonrigid body registration. IEEE Trans Med Imaging. 2008;27(1):111–28.

    Article  Google Scholar 

  15. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999;18(8):712–21.

    Article  Google Scholar 

  16. Huang Xishi, Ho Danny, Ren Jing, Capretz Luiz F. A soft computing framework for software effort estimation. Soft Comput. 2006;10(2):170–7.

    Article  Google Scholar 

  17. 3D Slicer. https://www.slicer.org/.

  18. VMTK. http://www.vmtk.org/.

  19. Noorda YH, Bartels LW, Viergever MA, Pluim JP. Subject-specific four-dimensional liver motion modeling based on registration of dynamic MRI. J Med Imaging. 2016;3(1):015002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Abdalbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Green, M., Huang, X. et al. Automatic error correction using adaptive weighting for vessel-based deformable image registration. Biomed. Eng. Lett. 7, 173–181 (2017). https://doi.org/10.1007/s13534-017-0020-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-017-0020-9

Keywords

Navigation