Skip to main content
Log in

Cadmium modulates the mRNA expression and activity of glutathione S-transferase in the monogonont Rotifer Brachionus koreanus

Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Cadmium has adverse effects on aquatic organisms. Here, we measured the ROS level, total GSH contents and total GST activity after exposure to Cd. In addition, the mRNA expression of four GST isoforms was investigated in response to Cd using real-time RT-PCR in the monogonant rotifer, Brachionus koreanus. As results, intracellular ROS level was elevated, total GSH content was declined, and GST activity was significantly elevated in Cd-exposed group, indicating that Cd can induce oxidative stress by producing ROS, and GSH and GST may be involved in cellular protection against Cd-induced toxicity. After exposure to Cd, mRNA expression of Bk-GST isoforms was differently modulated. In particular, Bk-GST-omega mRNA level was highly sensitive to Cd exposure, indicating that this isoform play a key role in protective responses to Cd in this species and would be useful as a molecular biomarker for monitoring of heavy metal toxicity in aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sabolic, I., Herak-Kramberger, C. M. & Brown, D. Subchronic cadmium treatment affects the abundance and arrangement of cytoskeletal proteins in rat renal proximal tubule cells. Toxicology 165, 205–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Sharma, S. S. & Dietz, K. J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14, 43–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Sheehan, D., Meade, G., Foley, V. M. & Dowd, C. A. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360, 1–16 (2001).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Valavanidis, A., Vlahogianni, T., Dassenakis, M. & Scoullos, M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 64, 178–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Rhee, J.-S. et al. Molecular cloning and characterization of omega class glutathione S-transferase (GST-O) from the polychaete Neanthes succinea: Biochemical comparison with theta class glutathione S-transferase (GST-T). Comp. Biochem. Physiol. C 146, 471–477 (2007a).

    Google Scholar 

  6. Rhee, J.-S. et al. Molecular cloning, expression, biochemical characteristics, and biomarker potential of theta class glutathione S-transferase (GST-T) from the polychaete Neanthes succinea. Aquat. Toxicol. 83, 104–115 (2007b).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, K. W. et al. Expression of glutathione S-transferase (GST) genes in the marine copepod Tigriopus japonicus exposed to trace metals. Aquat. Toxicol. 89, 158–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Won, E.-J. et al. Response of glutathione S-tranferase (GST) genes to cadmium exposure in the marine pollution indicator worm, Perinereis nuntia. Comp. Biochem. Physiol. C 154, 82–92 (2011).

    Google Scholar 

  9. Dahms, H.-U., Hagiwara, A. & Lee, J.-S. Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquat. Toxicol. 101, 1–12 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Han, J. et al. Effect of copper exposure on GST activity and on the expression of four GSTs under oxidative stress condition in the monogonont rotifer Brachionus koreanus. Comp. Biochem. Physiol. Part C 158, 90–100 (2013).

    Google Scholar 

  11. Chelomin, V. P., Zakhartsev, M. V., Kurilenko, A. V. & Belcheva, N. N. An in vitro study of the effect of reactive oxygen species on subcellular distribution of deposited cadmium in digestive gland of mussel Crenomytilus grayanus. Aquat. Toxicol. 73, 181–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Bocchetti, R., Fattorini, D., Gambi, M. C. & Regoli, F. Trace metal concentrations and susceptibility to oxidative stress in the Polychaete Sabella spallanzanii (Gmelin) (Sabellidae): potential role of antioxidants in revealing stressful environmental conditions in the mediterranean. Arch. Environ. Contam. Toxicol. 46, 353–361 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Rico, D. et al. Heavy metals generate reactive oxygen species in terrestrial and aquatic ciliated protozoa. Comp. Biochem. Physiol. C 149, 90–96 (2009).

    Google Scholar 

  14. Kim, S. H., Kim, S. J., Lee, J. S. & Lee, Y. M. Acute effects of heavy metals on the expression of glutathione-related antioxidant genes in the marine ciliate Euplotes crassus. Mar. Pollut. Bull. 85, 455–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Hassoun, E. A. & Stohs, S. J. Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A1 cell cultures. Toxicology 112, 219–226 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Pulido, M. D. & Parrish, A. R. Metal-induced apoptosis: mechanisms. Mut. Res. 533, 227–241 (2003).

    Article  CAS  Google Scholar 

  17. Hultberg, B., Andersson, A. & Isaksson, A. Interaction of metals and thiols in cell damage and lutathione distribution: potentiation of mercury toxicity by dithiothreitol. Toxicology 156, 93–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Flora, S. J., Mittal, M. & Mehta, A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J. Med. Res. 128, 501–523 (2008).

    CAS  PubMed  Google Scholar 

  19. Shakoori, F. R. et al. Response of glutathione level in a protozoan ciliate, Stylonychia mytilus, to increasing uptake of and tolerance to nickel and zinc in the medium, Pakistan. J. Zool. 43, 569–574 (2011).

    Google Scholar 

  20. Firat, O., Cogun, H. Y., Aslanyavrusu, S. & Kargin, F. Antioxidant responses and metal accumulation in tissues of Nile tilapia Oreochromis niloticus under Zn, Cd and Zn+Cd exposures. J. Appl. Toxicol. 29, 295–301 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Souid, G., Souayed, N., Yaktiti, F. & Maaroufi, K. Effect of acute cadmium exposure on metal accumulation and oxidative stress biomarkers of Sparus aurata. Ecotoxicol. Environ. Saf. 89, 1–7 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Ivania, A. V., Cherkasov, A. S. & Sokolova, I. M. Effects of cadmium on cellular protein and glutathione synthesis and expression of stress proteins in eastern oysters, Crassostrea virginica Gmelin. J. Exp. Biol. 211, 577–586 (2008).

    Article  Google Scholar 

  23. Wang, L. et al. Effects of cadmium on glutathione synthesis in hepatopancreas of freshwater crab, Sinopotamon yangtsekiense. Chemosphere 74, 51–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Zirong, X. & Shijun, B. Effect of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicol. Environ. Saf. 67, 89–94 (2007).

    Article  PubMed  Google Scholar 

  25. Saint-Denis, M., Narbonne, J. F., Arnaud, C. & Ribera, D. Biochemical responses of the earthworm Eisenia fetida Andrei exposed to contaminated artificial soil: effects of lead acetate. Soil Biol. Biochem. 33, 395–404 (2001).

    Article  CAS  Google Scholar 

  26. Cao, L. et al. Tissue-specific accumulation of cadmium and its effects on antioxidative responses in Japanese flounder juveniles. Environ. Toxicol. Pharmacol. 33, 16–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, J. S. & Raisuddin, S. in Interdisciplinary Studies on Environmental Chemistry: Biological Responses to Chemical Pollutants (eds., Murakami, Y. et al.) 95–105 (TERRAPUB, Tokyo, 2008).

  28. Won, E.-J. et al. Susceptibility to oxidative stress and modulated expression of antioxidant genes in the copper-exposed polychaete Perinereis nuntia. Comp. Biochem. Physiol. C 155, 344–351 (2012).

    CAS  Google Scholar 

  29. Board, P. G. et al. Identification, characterization, and crystal structure of the omega class glutathione transferases. J. Biol. Chem. 275, 24798 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Jung, M. Y. & Lee, Y. M. Expression profiles of heat shock protein gene families in the Monogonont Rotifer Brachionus koreanus-exposed to copper and cadmium. Toxicol. Environ. Health. Sci. 4, 235–242 (2012).

    Article  Google Scholar 

  31. Small, B. C. et al. Stability of reference genes for realtime PCR analyses in channel catfish (Ictalurus punctatus) tissues under varying physiological conditions. Comp. Biochem. Physiol. B 151, 296–304 (2008).

    Article  PubMed  Google Scholar 

  32. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCt method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Bradford, M. M. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 7, 248–254 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Mi Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, B., Kim, H., Jung, MY. et al. Cadmium modulates the mRNA expression and activity of glutathione S-transferase in the monogonont Rotifer Brachionus koreanus . Toxicol. Environ. Health Sci. 7, 217–223 (2015). https://doi.org/10.1007/s13530-015-0241-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-015-0241-1

Keywords

Navigation