Skip to main content
Log in

Identification of genes induced by carbamazepine in human bronchial epithelial BEAS-2B cells

  • Research Article
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Some drugs are limited in their clinical application due to their propensity for inducing adverse side effects. We examined some clinical chemotherapeutic agents that have pulmonary toxic effects. Carbamazepine (CBZ) is an antiepileptic agent and its long-term use is associated with interstitial pneumonia, pulmonary fibrosis, and pulmonary infiltration with eosinophilia. CBZ is persistent in the environment and is frequently detected in water systems. A new technique in toxicity screening, “toxicogenomic technology”, represents a useful approach for evaluating the toxic properties of new drug candidates early in the drug discovery process and their potential effects on the environment. To this end, we have examined gene expression profiles in BEAS-2B cells (a human bronchial epithelial cell line) following exposure to CBZ, which induced pulmonary toxicity, by using a human oligonucleotide chip. We identified 518 up- and 496 down-regulated genes whose expression had changed by more than 1.5-fold (p<0.01) following CBZ exposure. Gene Ontology (GO) analysis showed elevation in the expression of genes involved in several key biological processes related to pulmonary toxicity, such as cholesterol metabolism, cell proliferation, and cell cycle regulation. In conclusion, the present study indicates that CBZ exerts its toxicity by modulating mRNA expression in BEAS-2B cells. We suggest that genes expressed by CBZ might serve as a molecular signature, which could be used more widely when implemented in combination with more traditional techniques, for the assessment and prediction of toxicity following CBZ-exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archibald, N. et al. Carbamazepine-induced interstitial pneumonitis in a lung transplant patient. Respir. Med. 100, 1660–1662 (2006).

    Article  PubMed  Google Scholar 

  2. Wilschut, F. A. et al. Recurrent respiratory distress associated with carbamazepine overdose. Eur. Respir. J. 10, 2163–2165 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. Ozkan, M., Dweik, R. A. & Ahmad, M. Drug-induced lung disease. Cleve. Clin. J. Med. 68, 782–785, 789–795 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. Zhang, W., Ding, Y., Boyd, S. A., Teppen, B. J. & Li, H. Sorption and desorption of carbamazepine from water by smectite clays. Chemosphere. 81, 954–960 (2010).

    Article  PubMed  CAS  Google Scholar 

  5. Thacker, P. D. Pharmaceutical data elude researchers. Environ. Sci. Technol. 39, 193A–194A (2005).

    PubMed  CAS  Google Scholar 

  6. Lienert, J., Güdel, K. & Escher, B. I. Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ. Sci. Technol. 41, 4471–4478 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Zhang, Y., Geissen, S. U. & Gal, C. Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere. 73, 1151–1161 (2008).

    Article  PubMed  CAS  Google Scholar 

  8. Carballa, M., Omil, F. & Lema, J. M. Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere. 72, 1118–1123 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. Sim, W. J., Lee, J. W. & Oh, J. E. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ. Pollut. 158, 1938–1947 (2010).

    Article  PubMed  CAS  Google Scholar 

  10. Tixier, C., Singer, H. P., Oellers, S. & Müller, S. R. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ. Sci. Technol. 37, 1061–1068 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Löffler, D., Römbke, J., Meller, M. & Ternes, T. A. Environmental fate of pharmaceuticals in water/sediment systems. Environ. Sci. Technol. 39, 5209–5218 (2005).

    Article  PubMed  Google Scholar 

  12. Chenxi, W., Spongberg, A. L. & Witter, J. D. Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere. 73, 511–518 (2008).

    Article  PubMed  CAS  Google Scholar 

  13. Ferrari, B., Paxéus, N., Lo Giudice, R., Pollio, A. & Garric, J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Saf. 55, 359–370 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. Yeo, M. K. & Kim, H. E. Gene expression in zebrafish embryos following exposure to TiO2 nanoparticles. Mol. Cell. Toxicol. 6, 97–104 (2010).

    Article  CAS  Google Scholar 

  15. Oscarson, M. et al. Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin. Pharmacol. Ther. 80, 440–456 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. Seo, T. et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics. 7, 551–561 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. Mann, L. et al. Inhibition of specific adenylyl cyclase isoforms by lithium and carbamazepine, but not valproate, may be related to their antidepressant effect. Bipolar Disord. 11, 885–896 (2009).

    Article  PubMed  CAS  Google Scholar 

  18. Oscarson, M. et al. Transcriptional profiling of genes induced in the livers of patients treated with carbamazepine. Clin. Pharmacol. Ther. 80, 440–456 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. Hung, S. I. et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet. Genomics. 16, 297–306 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. Ghelardoni, S., Tomita, Y. A., Bell, J. M., Rapoport, S. I. & Bosetti, F. Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol. Psychiatry. 56, 248–254 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. Kim, W. J. et al. A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet. Genomics. 20, 249–256 (2010).

    PubMed  CAS  Google Scholar 

  22. Meng, Q. W. et al. Inhibitory effect of carbamazepine on proliferation of estrogen-dependent breast cancer cells. Ai Zheng. 25, 967–973 (2006).

    PubMed  CAS  Google Scholar 

  23. Makmor-Bakry, M. et al. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clin. Neuropharmacol. 32, 205–212 (2009).

    Article  PubMed  CAS  Google Scholar 

  24. Pirmohamed, M., Lin, K., Chadwick, D. & Park, B. K. TNFalpha promoter region gene polymorphisms in carbamazepine-hypersensitive patients. Neurology. 56, 890–896 (2001).

    PubMed  CAS  Google Scholar 

  25. Alfirevic, A. et al. Serious carbamazepine-induced hypersensitivity reactions associated with the HSP70 gene cluster. Pharmacogenet. Genomics. 16, 287–296 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Lu, W., Li, X. & Uetrecht, J. P. Changes in gene expression induced by carbamazepine and phenytoin: testing the danger hypothesis. J. Immunotoxicol. 5, 107–113 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. Delvecchio, C. J., Bilan, P., Nair, P. & Capone, J. P. LXR-induced reverse cholesterol transport in human airway smooth muscle is mediated exclusively by ABCA1. Am. J. Physiol. Lung Cell Mol. Physiol. 295, L949–957 (2008).

    Article  PubMed  CAS  Google Scholar 

  28. Pie, J. E. et al. Correlation between nutrition intake and gene expression profiles in children with asthma. Mol. Cell. Toxicol. 6, 313–319 (2010).

    Article  CAS  Google Scholar 

  29. Song, M., Kim, Y. J. & Ryu, J. C. Phospholipidosis induced by PPARγ signaling in human bronchial epithelial (BEAS-2B) cells exposed to amiodarone. Toxicol. Sci. 120, 98–108 (2011).

    Article  PubMed  CAS  Google Scholar 

  30. Leite, S. A., Leite, P. J., Rocha, G. A., Routledge, P. A. & Bittencourt, P. R. Carbamazepine kinetics in cardiac patients before and during amiodarone. Arq. Neuropsiquiatr. 52, 210–215 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. Vancheri, C., Failla, M., Crimi, N. & Raghu, G. Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur. Respir. J. 35, 496–504 (2010).

    Article  PubMed  CAS  Google Scholar 

  32. Song, M., Kim, Y. J. & Ryu, J. C. Induction of ROS, p38 MAP Kinase and apoptosis via pulmonary toxic drugs. BioChip J. 3, 306–315 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chun Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, M., Kim, YJ. & Ryu, JC. Identification of genes induced by carbamazepine in human bronchial epithelial BEAS-2B cells. Toxicol. Environ. Health Sci. 3, 106–113 (2011). https://doi.org/10.1007/s13530-011-0085-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-011-0085-2

Keywords

Navigation