Skip to main content

Advertisement

Log in

From obesity through immunity to type 2 diabetes mellitus

  • Review Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic disorder that leads to the development of a number of complications. The etiology of each metabolic complication is undoubtedly multifactorial. Patients with diabetes have increased susceptibility to and severity of infections. The course of infections is also more complicated in the patient group. One of the possible causes of this increased prevalence of infections is defect in immunity. Different disturbances in humoral innate immunity have been described in patients with diabetes. Concerning cellular innate immunity, most studies show decreased functions of polymorphonuclear cells and monocyte/macrophages of these patients compared to cells of healthy subjects. Several studies have shown alterations in peripheral blood mononuclear cells from patients with type 2 diabetes, an effect that contributes to the high incidence of infections in these patients. The gut microbiota plays different roles such as the following: protects against pathogens, helps in the maturation of the immune system, regulates the intestinal hormone secretion, synthesizes vitamin K and several vitamins B, and produces short-chain fatty acids (SCFAs). It also plays a role in immunomodulation and might contribute to the alterations in glucose metabolism. In the present review, I focused on the role of obesity, the immune system, and the gut microbiota in the pathogenesis of type 2 diabetes mellitus, and as a second point, how type 2 diabetes impairs the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.

    Article  PubMed  Google Scholar 

  2. Zaccardi F, Webb DR, Yates T, Davies MJ. Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Postgrad Med J. 2016;92:63–9. doi:10.1136/postgradmedj-2015-133281.

  3. Velloso LA, Eizirik DL, Cnop M. Type 2 diabetes mellitus – an autoimmune disease? Nat Rev Endocrinol. 2013;9:750–5.

    Article  CAS  PubMed  Google Scholar 

  4. Itariu BK, Stulnig TM. Autoimmune aspects of type 2 diabetes mellitus—a mini-review. Gastroenterology. 2014;60:189–96.

    CAS  Google Scholar 

  5. Shah BR, Hux JE. Quantifying the risk of infectious diseases for people with diabetes. Diabetes Care. 2003;26:510–3.

    Article  PubMed  Google Scholar 

  6. Yende S, van der Poll T, Lee MJ, Huang DT, Newman AB, Kong L, et al. The influence of pre-existing diabetes mellitus on the host immune response and outcome of pneumonia: analysis of two multicenter cohort studies. Thorax. 2011;65:870–7.

    Article  Google Scholar 

  7. Horvath P, Oliver SR, Zaldivar Jr FP, Radom-Aizik S, Galassetti PR. Effects of intravenous glucose and lipids on innate immune cell activation in healthy, obese and type 2 diabetic subjects. Physol Rep. 2015;3,2:e12249.

    Article  CAS  Google Scholar 

  8. Chng MHY, Alonso MN, Barnes SE, Nguyen KD, Engleman EG. Adaptive immunity and antigen-specific activation in obesity-associated insulin resistance. Mediat Inflam. 2015; doi:10.1155/2015/593075.

    Google Scholar 

  9. Lumeng CN, Delprosto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57:3239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diab Res Clin Pract. 2014;105:141–50.

    Article  CAS  Google Scholar 

  11. van Greevenbroek MMJ, Schalkwijk CG, Stehouwer CDA. Obesity-associated low-grade inflammation in type 2 diabetes mellitus: causes and consequences. Natl J Med. 2013;71:174–87.

    Google Scholar 

  12. Le Sommer S, Pesaresi M, Martin-Granadas C, Deligebovic M. Protein tyrosine phosphatase 1B (PTP1B) in the immune system. Inflam Cell Signal. 2015;2:e965. doi:10.14800/ics.965.

    Google Scholar 

  13. Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol. 2014;222:R113–R7.

    Article  CAS  PubMed  Google Scholar 

  14. Seijkens T, Kusters P, Chatzigeorgiu A, Chavakis T, Lutgens E. Immune cell crosstalk in obesity: a key role for costimulation. Diabetes. 2014;63:2751–60.

    Article  CAS  Google Scholar 

  15. Viardot A, Lord RV, Samars K. The effect of weight loss and gastric banding on the innate and adaptive immune system in type 2 diabetes and prediabetes. J Clin Endocrinol Metab. 2010;95:2845–50.

    Article  CAS  PubMed  Google Scholar 

  16. Ndisang JF, Rastogi S, Vannacci A. Immune and inflammatory processes in obesity, insulin resistance, diabetes, and related cardiometabolic complications. J Immunol Res. 2014. doi:10.1155/2014/579560.

    PubMed  PubMed Central  Google Scholar 

  17. Al-Suhaimi E, Shehzad A. Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity. Eur J Med Res. 2013;18:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nito N, Hosoda T, Chiaki K, Sato K. Change of cytokine balance in diet-induced obese mice. Metabolism. 2000;49:1295–300.

    Article  Google Scholar 

  19. Loffreda S, Yang SQ, Lin HZ, Karp GL, Brengman ML, Klein AS, et al. Leptin regulates proinflammatory immune responses. FASEB J. 1998;12:57–65.

    CAS  PubMed  Google Scholar 

  20. Murray PJ, Allen JE, Biswas S, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    Article  CAS  PubMed  Google Scholar 

  22. McNeils JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41:36–48.

    Article  CAS  Google Scholar 

  23. Nieto-Vazquez I, Fernandez-Veledo S, Kramer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-α. Arch Physiol Biochem. 2008;114:183–94.

    Article  CAS  PubMed  Google Scholar 

  24. Vanderford NL. Defining the regulation of IL-1β- and CHOP-mediated β-cell apoptosis. Islets. 2010;2:334–6.

    Article  PubMed  Google Scholar 

  25. Odegaard JL, Chawla A. Alternative macrophage activation and metabolism. Annu Rev Pathol. 2011;6:275–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Espinoza-Jeménez A, Peón AN, Terrazas LI. Alternatively activated macrophages in type 1 and 2 diabetes. Med Inflamm. 2012; doi:10.1155/2012/815953.

    Google Scholar 

  27. Bilan PJ, Samokhvalov V, Koshkina A, Schertzer JD, Samaan MC, Klip A. Direct and macrophage-mediated actions of fatty acids causing insulin resistance in muscle cells. Arch Physiol Biochem. 2009;115:176–90.

    Article  CAS  PubMed  Google Scholar 

  28. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  CAS  PubMed  Google Scholar 

  29. Arora P, Garcia-Bailo B, Dastani Z, Brenner D, Villegas A, Malik S, et al. Genetic polymorphisms of innate immunity-related inflammatory pathways and their association with factors related to type 2 diabetes. BMC Med Genet. 2011;12:95. doi:10.1186/1471-2350-12-95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu H. Obesity and metabolic inflammation. Drug Disc Today: Disease Mech. 2013;10:e21–e5.

    Article  Google Scholar 

  31. Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37:365–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Donath MY, Dalmas E, Sauter NS, Böni-Schnetzler M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metabol. 2013;17:860–72.

    Article  CAS  Google Scholar 

  33. Cildir G, Akincilar SC, Tergaonkar V. Chronic adipose tissue inflammation: all immune cells on the stage. Trends Mol Med. 2013;19:487–500.

    Article  CAS  PubMed  Google Scholar 

  34. Richardson VR, Smith KA, Carter AM. Adipose tissue inflammation: feeding the development of type 2 diabetes mellitus. Immunobiology. 2013;218:1497–504.

    Article  CAS  PubMed  Google Scholar 

  35. Shu CJ, Benoist C, Mathis D. The immune system’s involvement in obesity-driven type 2 diabetes. Sem Immunol. 2012;24:436–42.

    Article  CAS  Google Scholar 

  36. Brooks-Worell B, Narla R, Palmer JP. Biomarkers and immune-modulating therapies for type 2 diabetes. Trends Immunol. 2012;11:546–53.

    Article  CAS  Google Scholar 

  37. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kintscher U, Harte M, Hess K, Foryst-Ludwig A, Klemenz M, Wabitsch M, et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28:1304–10.

    Article  CAS  PubMed  Google Scholar 

  39. Monney L, Sabatos CA, Gaglia JL. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002;415:536–41.

    Article  CAS  PubMed  Google Scholar 

  40. Rempel JD, Packiasamy J, Dean HJ, McGavock J, Janko A, Collister M, et al. Preliminary analysis of immune activation in early onset type 2 diabetes. Int J Circum Health. 2013. doi:10.3402/ijch.v72i0.21190.

  41. Creely SJ, McTernan PG, Kusminski CM, Fisher ff M, NF DS, Khanolkar M, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E740–E7.

    Article  CAS  PubMed  Google Scholar 

  42. Cardan E, Hogan AE, Corrigan M, Gaotswe G, O’Connell J, Foley N, et al. The impact of childhood obesity on inflammation, innate immune frequency, and metabolic MicroRNA expression. J Clin Endocrinol Metab. 2014;99:E474–E8.

    Article  CAS  Google Scholar 

  43. Shih Y-L, Ho K-T, Tsao C-H, Chang Y-H, Shiau M-Y, Huang C-N, et al. Role of cytokines in metabolism and type 2 diabetes mellitus. Int J Biomed Lab Sci. 2013;2:1–6.

    Google Scholar 

  44. Jin C, Henao-Mejia J, Flavell RA. Innate immune receptors: key regulators of metabolic disease progression. Cell Metabol. 2013;17:873–82.

    Article  CAS  Google Scholar 

  45. Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp. 2013;61:119–25.

    Article  CAS  Google Scholar 

  46. Zhu M, Nikolajczyk BS. Immune cells link obesity-associated type 2 diabetes and peridontitis. J Dent Res. 2014;93:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patel PS, Buras ED, Balasubramanyam A. The role of the immune system in obesity and insulin resistance. J Obes. 2013;2013:616193. doi:10.1155/2013/616193.

  48. Medzhitov R, Janeway Jr CA. An ancient system of host defense. Curr Opin Immunol. 1998;10:12–5.

    Article  CAS  PubMed  Google Scholar 

  49. Muzio M, Polentarutti N, Bosisio D, Manoi Kumar PP, Mantovani P. Toll-like receptor family and signaling pathway. Biochem Soc Trans. 2000;28:563–6.

    Article  CAS  PubMed  Google Scholar 

  50. Osborn O, Olefsky JM. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 2012;18:363–74.

    Article  CAS  PubMed  Google Scholar 

  51. Bao Y, Mo J, Ruan L, Li G. Increased monocytic CD14 + HLADRlow/− myeloid-derived suppressor cells in obesity. Mol Med Rep. 2014:2322–8. doi:10.3892/mmr.2014.2927.

  52. El-Hafez HA, El-Aziz SMA. Association between immune competence and metabolic parameters in obesity. Trend Med Res. 2012;7:53–61.

    Article  CAS  Google Scholar 

  53. Dinarello CA, Donath MY, Mandrup-Poulsen T. Role of IL-1β in type 2 diabetes. Curr Opin Endocrinol Diab Obes. 2010;17:314–21.

    CAS  Google Scholar 

  54. Mandrup-Poulsen T, Bendtzen K, Nerup J, Dinarello C, Svenson M, Nielsen J. Affinity-purified human interleukin 1 is cytotoxic to isolated islet of Langerhans. Diabetologia. 1986;29:63–7.

    Article  CAS  PubMed  Google Scholar 

  55. Pickup J, Crook M. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia. 1998;41:1241–8.

    Article  CAS  PubMed  Google Scholar 

  56. Crook M. Type 2 diabetes mellitus: a disease of the innate immune system? An update Diab Med 2004;21:203–207

  57. Schmidt MI, Duncan BB, Sharett AR, Lindberg G, Savage PJ, Offenbacher A, et al. Markers of inflammation and prediction of diabetes mellitus in adults (atherosclerosis risk in communities study). Lancet. 1999;353:1649–52.

    Article  CAS  PubMed  Google Scholar 

  58. Barzilay JL, Abraham L, Heckbert SR, Cushman M, Kuller LH, Resnick HE, et al. The relation of markers of inflammation to the development of glucose disorders in the elderly: the cardiovascular health study. Diabetes. 2001;50:2384–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lindsay RS, Krakoff J, Hanson RL, Bennett PH, Knowler WC. Gamma globulin levels predict type 2 diabetes in the Pima Indian population. Diabetes. 2001;50:1598–603.

    Article  CAS  PubMed  Google Scholar 

  60. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27:813–23.

    Article  PubMed  Google Scholar 

  61. Sell H, Habich C, Eckel J. Adaptative immunity in obesity and insulin resistance. Nat Rev Endocrinol. 2012;8:709–16.

    Article  CAS  PubMed  Google Scholar 

  62. Bandaru P, Rajkumar H, Nappanveettil G. The impact of obesity on immune response to infection and vaccine: an insight into plausible mechanisms. Endocrinol Metab Synd. 2013;2:1000113.

    Google Scholar 

  63. Farnsworth CW, Shehatou CT, Maynard R, Nishitani K, Kates SL, Zuscik MJ, et al. A humoral immune defect distinguishes the response to Staphylococcus aureus infection in mice with obesity and type 2 diabetes from that in mice with type 1 diabetes. Inf Immun. 2015;83:2264–74.

    Article  CAS  Google Scholar 

  64. Hunsche C, Hernandez O, De la Fuente M. Impaired immune response in old mice suffering from obesity and premature immunosenescence in adulthood. J Gerontolog A Biol Sci Med Sci. 2016;71:983–91.

    Article  Google Scholar 

  65. Winer S, Chan Y, Paltser G, Truong D, Tsui H, Bahrami J, et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med. 2009;15:921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15:914–20.

    Article  CAS  PubMed  Google Scholar 

  67. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.

    Article  CAS  PubMed  Google Scholar 

  68. van Exel E, Gussekloo J, de Craen RG, Frolich M, Bootsma-Van Der WA, Westendorp RG. Low production capacity of interleukin-10 associates with the metabolic syndrome and type 2 diabetes: the Leiden 85-plus study. Diabetes. 2002;51:1088–92.

    Article  PubMed  Google Scholar 

  69. Ilan Y, Maron R, Tukpah AM, Maioli TU, Murugaiyan G, Yang K, et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci U S A. 2010;107:9765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu J, Su HL, Wang JH, Zhang CH. Role of CD4+CD25+Fox3+ regulatory T cells in type 2 diabetic nephropathy. J South Med Univ. 2009;29:137–9.

    CAS  Google Scholar 

  71. Eller K, Kirsch A, Wolf AM. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes. 2011;60:2954–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ohmura K, Ishimori N, Ohmura Y, Tokuhara S, Nozawa A, Horii S, et al. Natural killer T cells are involved in adipose tissues inflammation and glucose intolerance in diet-induced obese mice. Arterioscl Thromb Vasc Biol. 2010;30:193–9.

    Article  CAS  PubMed  Google Scholar 

  73. Pantham P, Aye ILMH, Powell TL. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta. 2015;36:709–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wen Y, Gu SL, Reddy MA, Natarajan R, Nadler JL. Elevated glucose and diabetes promote interleukin-12 cytokine expression in mouse macrophages. Endocrinology. 2006;147:2518–25.

    Article  CAS  PubMed  Google Scholar 

  75. Ha H, Yu MR, Choi YJ, Kitamura M, Lee HB. Role of high glucose-induced nuclear factor-ĸB activation in monocytes chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol. 2002;13:894–902.

    CAS  PubMed  Google Scholar 

  76. Chen JS, Lee HS, Jin JS, Chen A, Lin SH, Ka SM, et al. Attenuation of mouse mesangial cell contractility by high glucose and mannitol: involvement of protein kinase C and focal adhesion kinase. J Biomed Sci. 2004;11:142–51.

    Article  CAS  PubMed  Google Scholar 

  77. Goh SY, Cooper ME. Clinical review: the role of advanced glycation end products in progression and complication of diabetes. J Clin Endocrinol Metab. 2008;93:1143–52.

    Article  CAS  PubMed  Google Scholar 

  78. Morohoshi M, Fujisawa K, Uchimura I, Numano F. Glucose-dependent interleukin 6 and tumor necrosis factor production by human peripheral blood monocytes in vitro. Diabetes. 1996;45:954–9.

    Article  PubMed  Google Scholar 

  79. Winkler G, Salamon F, Harmos G. Elevated serum tumor necrosis factor-alpha concentrations and bioactivity in type 2 diabetics and patients with android type obesity. Diab Res Clin Pract. 1998;42:169–74.

    Article  CAS  Google Scholar 

  80. Imani F, Horii Y, Suthanthiran M, Skolnik EY, Makita Z, Sharma V, et al. Advanced glycosylation endproduct-specific receptors on human and rat T-lymphocytes mediate synthesis of interferon γ: role in tissue remodeling. J Exp Med. 1993;178:2165–72.

    Article  CAS  PubMed  Google Scholar 

  81. del Aguila LF, Claffey KP, Kirwan JP. TNF-alpha impairs insulin signaling and insulin stimulation and glucose uptake in C2C12 muscle cells. Am J Phys. 1999;276:E849–E55.

    Google Scholar 

  82. Qi C, Pekala PH. Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. Proc Soc Exp Biol Med. 2000;223:128–35.

    Article  CAS  PubMed  Google Scholar 

  83. Luo B, Chan WFN, Lord SJ, Nanji SA, Rajotte RV, Shapiro AMJ, et al. Diabetes induces rapid suppression of adaptive immunity followed by homeostatic T-cell proliferation. Scand J Immunol. 2007;65:22–31.

    Article  CAS  PubMed  Google Scholar 

  84. Berrou J, Fougeray S, Venot M, Chardiny V, Gautier J-F, Dulphy N, et al. Natural killer cell function, an important target for infection and tumor protection, is impaired in type 2 diabetes. PLoS One. 2013;8:e62418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang K, Kaufman RJ. From endoplasmic reticulum stress to the inflammatory response. Nature. 2008;454:455–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Saleh MA. Study complement activity and humoral immune response in type 2 diabetes mellitus. Diyala Agricult Sci J. 2011;3:34–46.

    Google Scholar 

  87. Hatanaka E, Monteagudo PT, Marrococ MS, Campi A. Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clin Exp Immunol. 2006;146:443–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Andreasen AS, Pedersen-Skovsgaard T, Berg RMG, Svendsen KD, Feldt-Rasmussen B, Pedersen BK, et al. Type 2 diabetes mellitus is associated with impaired cytokine response and adhesion molecule expression in human endotoxemia. Int Care Med. 2010; doi:10.1007/s00134-010-1845-1.

    Google Scholar 

  89. Leser TD, Molbak L. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ Microbiol. 2009;11:2194–206.

    Article  CAS  PubMed  Google Scholar 

  90. Allin KH, Nielsen T, Pedersen O. Gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol. 2015;172:R167–R77.

    Article  CAS  PubMed  Google Scholar 

  91. Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242–9.

    Article  CAS  PubMed  Google Scholar 

  92. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014;5:1–10.

    Article  Google Scholar 

  93. Purchiaroni F, Tortora A, Gabrielli M, Bertucci F, Gigante G, Janiro G, et al. The role of intestinal microbiota and the immune system. Eur Rev Med Pharmacol Sci. 2013;17:323–33.

    CAS  PubMed  Google Scholar 

  94. Delgado S, Suárez A, Mayo B. Identification of dominant bacteria in feces and colonic mucosa from healthy Spanish adults by culturing and by 16S rDNA sequence analysis. Dig Dis Sci. 2006;51:744–51.

    Article  PubMed  Google Scholar 

  95. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominiguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. PNAS. 2004;101:15718–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.

    Article  PubMed  Google Scholar 

  98. Turnbaugh P, Ridaura V, Faith J, Rey F, Knight R, Gordon J. The effect of diet on the human gut microbiome: a metagenomics analysis in humanized gnotobiotic mice. Sci Trans Med. 2009;1:6–14.

    Article  CAS  Google Scholar 

  99. Santacruz A, Manos A, Warnberg J, Marti A, Martin-Matillas M, Compoy C, et al. Interplay between weight loss and gut microbiota composition in overweight adolescent. Obesity (Silver Spring). 2009;17:1906–15.

    Article  Google Scholar 

  100. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME. 2011;5:220–30.

    Article  CAS  Google Scholar 

  101. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factor contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11:1185–200.

    Article  PubMed  PubMed Central  Google Scholar 

  102. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology. 2009;137:1716–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen J, He X, Huang J. Diet effects in gut microbiome and obesity. J Food Sci. 2014;79:R442–R7.

    Article  CAS  PubMed  Google Scholar 

  105. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72.

    Article  CAS  PubMed  Google Scholar 

  108. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990;249:1431–3.

    Article  CAS  PubMed  Google Scholar 

  109. Festi D, Schiumerini R, Eusebi LH, Marasco G, Taddia M, Colecchia A. Gut microbiota and metabolic syndrome. World J Gastroenterol. 2014;20:16079–94.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core guts microbiome in obese and lean twins. Nature. 2009;457:480–4.

    Article  CAS  PubMed  Google Scholar 

  111. de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol-Gastrointestinal Liver Physiol. 2010;299:G440–G8.

    Article  CAS  Google Scholar 

  112. Guerts L, Neyrinck AM, Delzenne NM, Knauf C, Cani PD. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and intervention using prebiotics. Beneficial Microb. 2014;5:3–17.

    Article  Google Scholar 

  113. Matias I, Di Marzo V. Endocannabinoids and the control of energy balance. Trends in Endocrinol Metabol. 2007;18:27–37.

    Article  CAS  Google Scholar 

  114. Tam J, Vemuri VK, Liu J, Batkai S, Mukhopadhyay B, Godlewski G, et al. Peripheral CB1 cannobinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J Clin Invest. 2010;120:2953–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Muccioli GG, Naslain D, Backhed F, Reigstad LS, Lambert DM, Delzenne NM, et al. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010;6:392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buleon M, et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metabol. 2008;8:437–45.

    Article  CAS  Google Scholar 

  117. Duparc T, Colom A, Cani PD, Massaby N, Rastrelli S, Drougard A, et al. Central apelin controls glucose homeostasis via a nitric oxide-dependent pathway in mice. Antioxid Redox Signal. 2011;15:1477–96.

    Article  CAS  PubMed  Google Scholar 

  118. Guerts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, et al. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol. 2011;2:149.

    Google Scholar 

  119. Larsen N, Vogensen FK, van der Berg FW, Nielsen DS, Andreasen SA, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Wall R, Ross RP, Shanohan F, O’Mahony L, O’Mahony C, Coakley M, et al. Metabolic activity of the enteric microbiota influences the fatty acid composition of murine and porcine liver and adipose tissue. Am J Clin Nutr. 2009;89:1393–401.

    Article  CAS  PubMed  Google Scholar 

  121. Qin L, Li Y, Cai Z, Li S, Zhu Y, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    Article  CAS  PubMed  Google Scholar 

  122. Karlsson FH, Tremaroli V, Nookaew I, Bergstram G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;5:829–51.

    Google Scholar 

  123. Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance. Nutrients. 2013;5:829–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Stachowicz N, Kirsztan A. The role of gut microbiota in the pathogenesis of obesity and diabetes. Post Hig Med Dośw. 2013;67:288–303.

    Article  Google Scholar 

  125. Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013;11:46.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Schipper HS, Nuboer R, Prop S, van den Ham HJ, de Boer FK, Kesmir C, et al. Systemic inflammation in childhood obesity: circulating inflammatory mediators and activated CD14++ monocytes. Diabetologia. 2012;55:2800–10.

    Article  CAS  PubMed  Google Scholar 

  127. O’Rourke RW, Kay T, Scholz MH, Diggs B, Jobe BA, et al. Alterations in T-cell subset frequency in peripheral blood in obesity. Obes Surg. 2005;15:1463–8.

    Article  PubMed  Google Scholar 

  128. Carolan E, Hogan AE, Corrigan M, Gaotswe G, O’Connell J, Foley N, et al. The impact of childhood obesity on inflammation, innate immune cells frequency, and metabolic MicroRNA expression. J Clin Endocrinol Metab. 2014;99:E474–E8.

    Article  CAS  PubMed  Google Scholar 

  129. Poher A-L, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. 2015;6:Art 4. doi:10.3389/fphys.2015.0004.

    Article  Google Scholar 

  130. Rutkowski JM, Stern JH, Scherer PE. The cell biology of fat expansion. J Cell Biol. 2015;5:501–12.

    Article  CAS  Google Scholar 

  131. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signaling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85–96.

    Article  CAS  PubMed  Google Scholar 

  132. Stöckli J, Fazakerley DJ, James DE. GLUT4 exocytosis. J Cell Sci. 2011;124:4147–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Lizcano JM, Alessi DR. The insulin signaling pathway. Curr Biol. 2002;12:R236–R8.

    Article  CAS  PubMed  Google Scholar 

  134. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;4:473–81.

    Article  Google Scholar 

  135. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  CAS  PubMed  Google Scholar 

  136. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw GJ, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking protein kinase Akt2 (PKBβ). Science. 2001;292:1728–31.

    Article  CAS  PubMed  Google Scholar 

  137. Blüher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, et al. Adipose tissue selective receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002;3:25–38.

    Article  PubMed  Google Scholar 

  138. Cariou B, Postic C, Boudou P, Burcelin R, Kahn CR, Girand J, et al. Cellular and molecular mechanisms of adipose tissue plasticity in muscle insulin receptor knockout mice. Endocrinology. 2004;145:1926–32.

    Article  CAS  PubMed  Google Scholar 

  139. Blüher M, Kahn BB, Kahn CR. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science. 2003;299:572–4.

    Article  PubMed  CAS  Google Scholar 

  140. Boucher J, Softic S, Ouamari AE, Krumpoch MT, Kleinridders A, Kulkarni RN, et al. Differential roles of insulin and IGF-1 receptors in adipose tissue development and function. Diabetes. 2016;65:2201–13.

  141. Softic S, Boucher J, Solheim MH, Fujisaka S, Haering M-F, Homan EP, et al. Lipodystrophy due to adipose tissue specific insulin receptor knockout results in progressive NAFLD. Diabetes. 2016; doi:10.2337/db16-0213.

    Google Scholar 

  142. Guerra C, Navarro P, Valverde AM, Arribas M, Brüning J, Kozak LP, et al. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest. 2001;108:1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kurlawalla-Martinez C, Stiles B, Wang Y, Devaskar SU, Kahn BB, Wu H. Insulin hypersensitivity and resistance to streptozotocin-induced diabetes in mice lacking PTEN in adipose tissue. Mol Cell Biol. 2005;25:2498–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Colomiere M, Permezel M, Lappas M. Diabetes and obesity during pregnancy alter insulin signalling and glucose transporter expression in maternal skeletal muscle and subcutaneous adipose tissue. J Mol Endocrinol. 2010;44:213–23.

    Article  CAS  PubMed  Google Scholar 

  145. Qlang G, Kong HW, Xu S, Pham HA, Parle SD, Burr AA, et al. Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. Mol Metab. 2016;5:480–90.

    Article  CAS  Google Scholar 

  146. Mitrou P, Raptis SA, Dimitriadis G. Insulin action in morbid obesity: a focus on muscle and adipose tissue. Hormones. 2013;12:201–13.

    Article  PubMed  Google Scholar 

  147. Cheng Z, Tseng Y, White MF. Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab. 2010;21:589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Emanuelli B, Peraldi P, Filloux C, Chavey C, Freidinger K, Hilton DJ, et al. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. J Biol Chem. 2001;276:47944–9.

    Article  CAS  PubMed  Google Scholar 

  149. Zick Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci STKE. 2005;2005:p4.

    Google Scholar 

  150. Cai D, Yuan M, Frantz DE, Melendez PA, Hansen L, Lee J, et al. Local and systemic insulin resistance from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11:183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kalupahana NS, Claycombe KJ, Moustain-Moussa N. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: mechanistics insights. Adv Nutr. 2011;2:304–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Artherioscler Thromb Vasc Biol. 2012;32:2052–9.

    Article  CAS  Google Scholar 

  153. Mauer J, Chaurasia B, Plum L, Quast T, Hampel B, Blüher M, et al. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance. PLoS Genet. 2010;6:e1e000938.

    Article  CAS  Google Scholar 

  154. Shurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007;92:1023–33.

    Article  CAS  Google Scholar 

  155. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999;257:79–83.

    Article  CAS  PubMed  Google Scholar 

  156. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001;86:1930–5.

    Article  CAS  PubMed  Google Scholar 

  157. Rui L, Yuan M, Frantz D, Schoelson S, White ME. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem. 2002;277:42394–8.

    Article  CAS  PubMed  Google Scholar 

  158. Peraldi P, Spigelman B. TNF-alpha and insulin resistance: summary and future prospects. Moll Cell Biochem. 1998;182:169–75.

    Article  CAS  Google Scholar 

  159. Hotamisligil GS. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J Intern Med. 1999;245:621–5.

    Article  CAS  PubMed  Google Scholar 

  160. Hotamisligil GS, Murray DL, Choy LN, Spigelman BM. Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A. 1994;91:4854–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells cytokines, and chemokines. ISNR Inflammation. 2013; doi:10.1155/2013/139239.

    Google Scholar 

  162. Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem. 2003;278:13740–6.

    Article  CAS  PubMed  Google Scholar 

  163. Ueki K, Fruman DA, Yballe CM, Fasshauser M, Klein J, Asamo T, et al. Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J Biol Chem. 2003;278:48453–66.

    Article  CAS  PubMed  Google Scholar 

  164. Tharp WG, Gupta D, Smith J, Jones KP, Jones AM, Pratley RE. Effects of glucose and insulin on secretion of amyloid-β by human adipose tissue cells. Obesity. 2016;4:1471–9.

    Article  CAS  Google Scholar 

  165. Tomazic M, Janez A, Sketelj A, Kocijanic A, Eckel J, Sharma PM. Comparison of alterations in insulin signaling pathway in adipocytes from type II diabetic pregnant women with gestational diabetes mellitus. Diabetologia. 2002;45:502–8.

    Article  CAS  PubMed  Google Scholar 

  166. Mahesan AM, Ogunyemi D, Kim E, Paul ABM, Chen Y-DI. Insulin resistance in pregnancy is correlated with decreased insulin receptor gene expression in omental adipose: insulin sensitivity and adipose tissue gene expression in normal pregnancy. J Diab Mell. 2016;6:100–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Szablewski.

Ethics declarations

Funding

This study did not receive any specific grant from funding agencies in the public or not-for-profit sectors.

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szablewski, L. From obesity through immunity to type 2 diabetes mellitus. Int J Diabetes Dev Ctries 37, 407–418 (2017). https://doi.org/10.1007/s13410-016-0531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-016-0531-4

Keywords

Navigation