Skip to main content

Advertisement

Log in

Acute phase proteins and diabetes microvascular complications

  • Original Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

The association of serum high-sensitivity C-reactive protein and ferritin with diabetes microvascular complications has not been examined concurrently in people with type 2 diabetes. So, we carried out this study in order to investigate this association in a group of type 2 diabetic patients. In a prospective cross-sectional study, 242 people with type 2 diabetes were enrolled. All of the participants were evaluated for diabetes microvascular complications. Retinal status was evaluated by retinal color photography and indirect ophthalmoscopy exam with dilated pupils. Michigan neuropathy screening instrument was used for detection of peripheral neuropathy, and albumin/creatinine ratio in a spot urine sample was considered to diagnose diabetic nephropathy. High-sensitivity C-reactive protein and ferritin were measured as indicators of acute phase proteins. The mean for high-sensitivity C-reactive protein was 5.3 ± 13.02 mg/L, and for ferritin was 126.9 ± 114.4 ng/mL. Statistically significant difference was found between the high-sensitivity C-reactive protein levels and diabetic nephropathy. Spearman’s correlation coefficients test revealed that high-sensitivity C-reactive protein was positively correlated with diabetic nephropathy (P = 0.05, r = 0.14). However, such a correlation was not found for diabetic neuropathy and retinopathy. Using binary logistic regression analysis, a significant odds ratio was defined for nephropathy and high-sensitivity C-reactive protein level (OR = 2.62; CI = 1.13–6.06; P = 0.025). Our findings suggest that low-grade inflammation is an independent predictor of diabetic nephropathy and measurement of high-sensitivity C-reactive protein can be useful for early detection of high-risk individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Alb:

Albumin

ETDRS:

Early treatment diabetic retinopathy

HbA1C:

Glycosylated hemoglobin

hs-CRP:

High-sensitivity C-reactive protein

MNSI:

Michigan neuropathy screening instrument

OGLDs:

Oral glucose-lowering drugs

References

  1. Singh R, Shaw J, Zimmet P. Epidemiology of childhood type 2 diabetes in the developing world. Pediatr Diabetes. 2004;5:154–68.

    Article  CAS  PubMed  Google Scholar 

  2. King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79:1527–34.

    Article  CAS  PubMed  Google Scholar 

  3. Tsunoda K, Arita M, Yukawa M, et al. Retinopathy and hypertension affect serum high-sensitivity C-reactive protein levels in type 2 diabetic patients. J Diabet Complications. 2005;19(3):123–7.

    Article  Google Scholar 

  4. Thompson D, Pepys MB, Wood SP. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure. 1999;7(2):169–77.

    Article  CAS  PubMed  Google Scholar 

  5. Kang ES, Kim HJ, Ahn CW, et al. Relationship of serum high sensitivity C-reactive protein to metabolic syndrome and microvascular complications in type 2 diabetes. Diabetes Res Clin Pract. 2005;69(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  6. Thorand B, Lowel H, Schneider A, et al. C-reactive protein as a predictor for incident diabetes mellitus among middle aged men: results from the MONICA Augsburg Cohort Study. Arch Intern Med. 2003;163:93–9.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z, Hoy WE. C-reactive protein and the risk of developing type 2 diabetes in Aboriginal Australians. Diabetes Res Clin Pract. 2007;76(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  8. Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. J Am Med Assoc. 2001;286:327–34.

    Article  CAS  Google Scholar 

  9. Nakanishi S, Yamane K, Kamei N, et al. Elevated C-reactive protein is a risk factor for the development of type 2 diabetes in Japanese Americans. Diabetes Care. 2003;26:2754–7.

    Article  CAS  PubMed  Google Scholar 

  10. Laaksonen DE, Niskanen L, Nyyssonen K, et al. C-reactive protein and the development of the metabolic syndrome and diabetes in middle-aged men. Diabetologia. 2004;47:1403–10.

    Article  CAS  PubMed  Google Scholar 

  11. Yamada S, Gotoh T, Nakashima Y, et al. Distribution of serum C-reactive protein and its association with atherosclerotic risk factors in a Japanese population: Jichi Medical School Cohort Study. Am J Epidemiol. 2001;153:1183–90.

    Article  CAS  PubMed  Google Scholar 

  12. Ford ES, Giles WH. Serum C-reactive protein and self-reported stroke: findings from the Third National Health and Nutrition Examination Survey. Arterioscler Thromb Vasc Biol. 2000;20:1052–6.

    Article  CAS  PubMed  Google Scholar 

  13. Ong D, Wang L, Zhu Y, et al. The response of ferritin to LPS and acute phase of Pseudomonas infection. J Endotoxin Res. 2005;11(5):267–80.

    Article  CAS  PubMed  Google Scholar 

  14. Larade K, Storey KB. Accumulation and translation of ferritin heavy chain transcripts following anoxia exposure in a marine invertebrate. J Exp Biol. 2004;207(8):1353.

    Article  CAS  PubMed  Google Scholar 

  15. Beck G, Ellis TW, Habicht GS, et al. Evolution of the acute phase response: iron release by echinoderm (Asterias forbesi) coelomocytes, and cloning of an echinoderm ferritin molecule. Dev Comp Immunol. 2002;26(1):11–26.

    Article  CAS  PubMed  Google Scholar 

  16. Bottke W, Burschyk M, Volmer J. On the origin of the yolk protein ferritin in snails. Rouxs Arch Dev Biol. 1988;197(7):377.

    Article  CAS  Google Scholar 

  17. Liao L, Lei MX, Chen HL, et al. High-sensitive C-reactive protein and type 2 diabetic nephropathy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2004;29(6):627–30.

    CAS  PubMed  Google Scholar 

  18. Oba K, Yamashita N, Okazaki K, et al. High levels of serum ferritin in elderly patients with non-insulin-dependent diabetes mellitus. Nihon Ronen Igakkai Zasshi. 1997;34(4):305–11.

    Article  CAS  PubMed  Google Scholar 

  19. Canturk Z, Cetinarslan B, Tarkun I, et al. Serum ferritin levels in poorly- and well-controlled diabetes mellitus. Endocr Res. 2003;29(3):299–306.

    Article  CAS  PubMed  Google Scholar 

  20. Xu-biao M, Zhi-ming W, Di-ming Z. Relationship between serum ferritin and diabetic nephropathy. Chin J Lab Diagn. 2009;12.

  21. Early Treatment Diabetic Retinopathy Study Research Group. Grading diabetic retinopathy from stereoscopic color fundus photographs—an extension of the Modified Airlie House Classification. ETDRS report number 10. Ophthalmology. 1991;98:786–806.

    Article  Google Scholar 

  22. Michigan Diabetes Research and Training Center. Survey Instruments. 2000 [cited 2013 Feb 2]. Available from: http://www.med.umich.edu/mdrtc/profs/survey.html#mnsi

  23. Inoue K, Kato S, Ohara C, et al. Ocular and systemic factors relevant to diabetic keratoepitheliopathy. Cornea. 2001;20(8):798–801.

    Article  CAS  PubMed  Google Scholar 

  24. Herpers BL, Endeman H, de Jong BAW, et al. Acute-phase responsiveness of mannose-binding lectin in community-acquired pneumonia is highly dependent upon MBL2 genotypes. Clin Exp Immunol. 2009;156(3):488–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nayak BS, Roberts L. Relationship between inflammatory markers, metabolic and anthropometric variables in the Caribbean type 2 diabetic patients with and without microvascular complications. J Inflamm. 2006;3:1–7.

    Article  Google Scholar 

  26. Schalkwijk CG, Poland DC, Dijk WVD, et al. Plasma concentration of C-reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: evidence for chronic inflammation. Diabetologia. 1999;42:351–7.

    Article  CAS  PubMed  Google Scholar 

  27. Pyorala K, Laakso M, Uusitupa M. Diabetes and atherosclerosis: an epidemiologic view. Diabetes Metab Rev. 1987;3:463–524.

    Article  CAS  PubMed  Google Scholar 

  28. Ross R. The pathogenesis of atherosclerosis, a perspective for the 1990s. Nature. 1993;362:801–9.

    Article  CAS  PubMed  Google Scholar 

  29. Amanullah S, Jarari A, Govindan M, et al. Association of hs-CRP with diabetic and non-diabetic individuals. Jordan J Biol Sci. 2010;3(1):7–12.

    CAS  Google Scholar 

  30. Sitzer M, Markus HS, Mendall MA, et al. C-reactive protein and carotid intimal medial thickness in a community population. J Cardiovasc Risk. 2002;9:97–103.

    Article  PubMed  Google Scholar 

  31. Hashimoto H, Kitagawa K, Hougaku H, et al. C-reactive protein is an independent predictor of the rate of increase in early carotid atherosclerosis. Circulation. 2001;104:63–7.

    Article  CAS  PubMed  Google Scholar 

  32. Sesmilo G, Biller BMK, Llevadot J, et al. Effects of growth hormone administration on inflammatory and other cardiovascular risk markers in men with growth hormone deficiency. Ann Intern Med. 2000;133(2):111–22.

    Article  CAS  PubMed  Google Scholar 

  33. Smith JF, Dykes R, Douglas JE, et al. Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease. JAMA. 1999;281:1722–7.

    Article  CAS  PubMed  Google Scholar 

  34. Ridker P, Cushman M, Stampfer M, et al. Inflammation, aspirin and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9.

    Article  CAS  PubMed  Google Scholar 

  35. Takeda T, Hoshida S, Nishino M, et al. Relationship between effects of statins, aspirin and angiotensin II modulators on high-sensitive C-reactive protein levels. Atherosclerosis. 2003;169:155–8.

    Article  CAS  PubMed  Google Scholar 

  36. Del Cañizo Gómez FJ, Fernández Pérez C, Moreno Ruiz I, et al. Microvascular complications and risk factors in patients with type 2 diabetes. Endocrinol Nutr. 2011;58(4):163–8.

    Article  PubMed  Google Scholar 

  37. Yokoyama H, Jensen J, Myrup B, et al. Raised serum sialic acid concentration precedes onset of microalbuminuria in IDDM. Diabetes Care. 1996;19:435–40.

    Article  CAS  PubMed  Google Scholar 

  38. Mangili R. Microalbuminuria in diabetes. Clin Chem Lab Med. 1998;36:941–6.

    Article  CAS  PubMed  Google Scholar 

  39. Mojahedi MJ, Bonakdaran S, Hami M, et al. Elevated serum C-reactive protein level and microalbuminuria in patients with type 2 diabetes mellitus. Iran J KidneyDis. 2009;3:12–6.

    Google Scholar 

  40. Lim LS, Tai ES, Mitchell P, et al. C-reactive protein, body mass index, and diabetic retinopathy. Invest Ophthalmol Vis Sci. 2010;51(9):4458–63.

    Article  PubMed  Google Scholar 

  41. Holm J, Ravn J, Ingemann Hansen S. Urinary excretion of alpha1-microglobulin and albumin in acute myocardial infarction. Correlation with plasma concentrations of troponin I and C-reactive protein. Scand J Urol Nephrol. 2006;40:339–44.

    Article  CAS  PubMed  Google Scholar 

  42. Brownlee M, Aiello LP, Friedman E, Vinik AI, Nesto Rw, Boulton AJ. Complications of diabetes mellitus. In: Larsen PR, Kronenberg HM, Melmed S, Polonsky KS, editors. Endocrinology. 10th ed. Philadelphia: WB Saunders; 2003. p. 1509–40.

  43. Ladeia AM, Stefanelli E, Ladeia-Frota C, et al. Association between elevated serum C-reactive protein and triglyceride levels in young subjects with type 1 diabetes. Diabetes Care. 2006;29:424–6.

    Article  CAS  PubMed  Google Scholar 

  44. Scheid DC, McCarthy LH, Lawler FH, et al. Screening for microalbuminuria to prevent nephropathy in patients with diabetes: a systematic review of the evidence. J Fam Pract. 2001;50:661–8.

    CAS  PubMed  Google Scholar 

  45. Verma S, Wang CH, Li SH, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation. 2002;106:913–9.

    Article  CAS  PubMed  Google Scholar 

  46. Torzewski M, Rist C, Mortensen RF, et al. C-reactive protein in the arterial intima: role of C-reactive protein receptor-dependent monocyte recruitment in atherogenesis. Arterioscler Thromb Vasc Biol. 2000;20:2094–9.

    Article  CAS  PubMed  Google Scholar 

  47. Verma S, Li SH, Badiwala MV, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation. 2002;105:1890–6.

    Article  CAS  PubMed  Google Scholar 

  48. Jager A, van Hinsbergh VW, Kostense PJ, et al. Increased levels of soluble vascular cell adhesion molecule 1 are associated with risk of cardiovascular mortality in type 2 diabetes: the Hoorn Study. Diabetes. 2000;49:485–91.

    Article  CAS  PubMed  Google Scholar 

  49. Jager A, van Hinsbergh VW, Kostense PJ, et al. Von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic and nondiabetic subjects: the Hoorn Study. Arterioscler Thromb Vasc Biol. 1999;19:3071–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk In Communities (ARIC) study. Circulation. 1997;96:4219–25.

    Article  CAS  PubMed  Google Scholar 

  51. English P, Williams G. Type 2 diabetes. In Ann NY Acad Sci Volume 1067. London: Martin Dunitz Ltd; 2001. p. 448–453

  52. Schmiedel O, Schroeter ML, Harvey JN. Microalbuminuria in type 2 diabetes indicates impaired microvascular vasomotion and perfusion. Am J Physiol Heart Circ Physiol. 2007;293:H3424–31.

    Article  CAS  PubMed  Google Scholar 

  53. Hayden MR, Tyagi SC, Kolb L, et al. Vascular ossification-calcification in metabolic syndrome, type 2 diabetes mellitus, chronic kidney disease, and calciphylaxis-calcific uremic arteriolopathy: the emerging role of sodium thiosulfate. Cardiovasc Diabetol. 2005;4:4.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Festa A, D’Agostino R, Howard G, et al. Inflammation and microalbuminuria in nondiabetic and type 2 diabetic subjects: the Insulin Resistance Atherosclerosis Study. Kidney Int. 2000;58:1703–10.

    Article  CAS  PubMed  Google Scholar 

  55. Shelbaya S, Amer H, Seddik S, et al. Study of the role of interleukin-6 and highly sensitive C-reactive protein in diabetic nephropathy in type 1 diabetic patients. Eur Rev Med Pharmacol Sci. 2012;16(2):176–82.

    CAS  PubMed  Google Scholar 

  56. Fu CC, Wu DA, Wang JH, et al. Association of C-reactive protein and hyperuricemia with diabetic nephropathy in Chinese type 2 diabetic patients. Acta Diabetol. 2009;46(2):127–34.

    Article  CAS  PubMed  Google Scholar 

  57. Andreas F, Ralph D, George H, et al. Inflammation and microalbuminuria in nondiabetic and type 2 diabetic subjects, the insulin resistance atherosclerosis study. Kidney Int. 2000;58:1703–10.

    Article  Google Scholar 

  58. Pannacciulli N, Cantatore FP, Minenna A, et al. Urinary albumin excretion is independently associated with C-reactive protein levels in overweight and obese nondiabetic premenopausal women. J Int Med. 2001;250:502–7.

    Article  CAS  Google Scholar 

  59. Schram MT, Chaturvedi N, Schalkwijk CG, et al. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1diabetes: the EURODIAB Prospective Complications Study. Diabetologia. 2005;48:370–8.

    Article  CAS  PubMed  Google Scholar 

  60. Spijkerman AM, Gall MA, Tarnow L, et al. Endothelial dysfunction and low-grade inflammation and the progression of retinopathy in type 2 diabetes. Diabet Med. 2007;24:969–76.

    Article  CAS  PubMed  Google Scholar 

  61. Van Hecke MV, Dekker JM, Nijpels G, et al. Inflammation and endothelial dysfunction are associated with retinopathy: the Hoorn Study. Diabetologia. 2005;48:1300–6.

    Article  CAS  PubMed  Google Scholar 

  62. Le DS, Miles R, Savage PJ, et al. The association of plasma fibrinogen concentration with diabetic microvascular complications in young adults with early-onset of type 2 diabetes. Diabetes Res Clin Pract. 2008;82:317–23.

    Article  CAS  PubMed  Google Scholar 

  63. Nguyen TT, Alibrahim E, Amirul IF, et al. Inflammatory, hemostatic, and other novel biomarkers for diabetic retinopathy: the multi-ethnic study of atherosclerosis. Diabetes Care. 2009;32:1704–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Klein BE, Knudtson MD, Tsai MY, et al. The relation of markers of inflammation and endothelial dysfunction to the prevalence and progression of diabetic retinopathy: Wisconsin Epidemiologic Study of Diabetic Retinopathy. Arch Ophthalmol. 2009;127:1175–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Firkin F, Rush B. Interpretation of biochemical tests for iron deficiency: diagnostic difficulties related to limitations of individual tests. Aust Prescr. 1997;20:74–6.

    Article  Google Scholar 

  66. Elis A, Ferencz JR, Gilady G, et al. Is serum ferritin high in patients with diabetic retinopathy? A controlled study. Endocr Res. 2004;30(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  67. Eshed I, Elis A, Lishner M. Plasma ferritin and type 2 diabetes mellitus: a critical review. Endocr Res. 2001;27(1–2):91–7.

    Article  CAS  PubMed  Google Scholar 

  68. Khatana SAM, Taveira TH, Choudhary G, et al. Change in hemoglobin A1c and C-reactive protein levels in patients with diabetes mellitus. J Cardiometab Syndr. 2009;4(2):76–80.

    Article  PubMed  Google Scholar 

  69. Raj S, Rajan GV. Correlation between elevated serum ferritin and HbA1c in type 2 diabetes mellitus. Int J Res Med Sci. 2013;1(1):12–5.

    Article  Google Scholar 

  70. Eschwege E, Saddi R, Wacjman H, et al. Haemoglobin A1c in patients on venesection therapy for haemochromatosis. Diabete Metab. 1982;8:137–40.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff who greatly helped us to complete the project especially Mrs. Razieh Shahrokhi and Ms. Leila Mahmoodi. In addition, we appreciate all the people who contributed to this study.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author contributions

1. Study conception/design: Khamseh, Malek, Najafi, and Ebrahim Valojerdi

2. Data collection/analysis: Najafi, Ebrahim Valojerdi, Mrs. Shahrokhi, and Ms. Mahmoodi

3. Drafting of manuscript: Khamseh, Malek, Najafi, and Ebrahim Valojerdi

4. Critical revisions for important intellectual content and administrative/technical/material support: Khamseh, Malek, and Najafi

5. Supervision: Khamseh, Malek, and Najafi

6. Statistical expertise: Khamseh, Malek, Ebrahim Valojerdi, and Najafi.

Funding

This study was funded and supported by Tehran University of Medical Sciences (TUMS), Grant No. 92-01-122-21448.

Ethical code

This project was accepted by the ethical committee of Tehran University of Medical Sciences, ethical code: 39661, 31/10/2013

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad E. Khamseh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, L., Malek, M., Valojerdi, A.E. et al. Acute phase proteins and diabetes microvascular complications. Int J Diabetes Dev Ctries 36, 10–17 (2016). https://doi.org/10.1007/s13410-015-0389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-015-0389-x

Keywords

Navigation