Skip to main content

Advertisement

Log in

Heart rate variability and vibration perception threshold in healthy young adults with parental history of type 2 diabetes mellitus

  • ORIGINAL ARTICLE
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

The aim of the study was to evaluate cardiac autonomic function and somatic sensation in healthy young adults with parental history of type 2 diabetes mellitus (T2DM). The study was conducted on 40 young adults with parental history of T2DM and 40 young adults without parental history of T2DM. The short term heart rate variability (HRV) and vibration perception threshold (VPT) were assessed in both groups. In time domain measures, standard deviation of all RR intervals (SDNN) [26.5 (22–33) vs 33.5 (25–37.75) ms, P = 0.014], the square root of the mean of the sum of the squares of differences between adjacent RR intervals (RMSSD) [25.85 (16.22–33.8) vs 30.9 (24.4–41.67) ms, P = 0.013], and percentage of consecutive RR intervals that differ by more than 50 ms (pNN50) [4.6 (1.1–13.77) vs 12.4 (2.8–26.82) %, P = 0.022] were significantly less in young adults with parental history of T2DM. In frequency domain measures, low frequency (LF) [115.5 (83.75–140.75) vs 141 (104.25–249.75) ms2, P = 0.021], high frequency (HF) [114.5 (74.5–179) vs 182.5 (104.25–247) ms2, P = 0.006] and HF [33.3 (24.52–53.22) vs 56.8 (43.02–69.17) nu, P = 0.002] were significantly less in young adults with parental history of T2DM. Whereas, LF [49.8 (36.97–69.55) vs 45.2 (35.4–57.02) nu] and LF/HF [0.98 (0.65–1.62) vs 0.85 (0.5–2.02) %] were comparable between the groups. VPT (for peripheral neuropathy) was comparable between the groups. This study indicates that parental type 2 diabetes has an impact on the cardiac autonomic function in non-diabetic young adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korf BR. Genetics in medical practice. Genet Med. 2002;4(6 Suppl):10S–4S.

    Article  CAS  PubMed  Google Scholar 

  2. International Diabetes Federation (IDF). [http://www.idf.org/types-diabetes]. Accessed May 9, 2013.

  3. Pierce M, Keen H, Bradley C. Risk of diabetes in offspring of parents with non-insulin-dependent diabetes. Diabet Med. 1995;12:6–13.

    Article  CAS  PubMed  Google Scholar 

  4. Kobberling J, Tillil H. Empirical risk figures for first-degree relatives of non-insulin-dependent diabetics. In: Kobberling J, Tattersall R, editors. The genetics of diabetes mellitus. London: Academic; 1982. p. 201–9.

    Google Scholar 

  5. So WY, Ng MC, Lee SC, Sanke T, Lee HK, Chan JC. Genetics of type 2 diabetes mellitus. Hong Kong Med J. 2000;6:69–76.

    CAS  PubMed  Google Scholar 

  6. Chan JC, Cheung CK, Swaminathan R, Nicholls MG, Cockram CS. Obesity, albuminuria and hypertension among Hong Kong Chinese with non–insulin-dependent diabetes mellitus (NIDDM). Postgrad Med J. 1993;69:204–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, et al. Insulin resistance and insulin secretory dysfunction as precursors of non–insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. N Engl J Med. 1993;329:1988–92.

    Article  CAS  PubMed  Google Scholar 

  8. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043–65.

  9. Young MJ, Jones GC. Diabetic neuropathy: symptoms, signs and assessment. In: Boulton AJM, editor. Diabetic neuropathy. Lancashire: Marius Press; 1997. p. 41–61.

    Google Scholar 

  10. Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO. The Fagerstrom test for nicotine dependence: a revision of the Fagerstrom Tolerance Questionnaire. Br J Addict. 1991;86:1119–27.

    Article  CAS  PubMed  Google Scholar 

  11. Baboor TF, Higgins-Biddle JC, Saunders JB, Monterio MG. AUDIT: the alcohol use disorder identification test: guidelines for use in primary care. 2nd ed. Geneva: World Health Organization; 2001.

    Google Scholar 

  12. Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48:1342–7.

    Article  CAS  PubMed  Google Scholar 

  13. Goit RK, Khadka R, Sharma SK, Limbu N, Paudel BH. Cardiovascular autonomic function and vibration perception threshold in type 2 diabetes mellitus. J Diabetes Complicat. 2012;26:339–42.

    Article  PubMed  Google Scholar 

  14. Goit RK, Paudel BH, Sharma SK, Khadka R. Heart rate variability and vibration perception threshold in type 2 diabetes mellitus. Int J Diabetes Dev Ctries. 2013;33:134–9.

    Article  CAS  Google Scholar 

  15. Foss CH, Vestbol E, Froland A, Gjessing HJ, Mogensen CE, Damsgaard EM. Autonomic neuropathy in nondiabetic offspring of type 2 diabetic subjects is associated with urinary albumin excretion rate and 24-h ambulatory blood pressure: the Fredericia Study. Diabetes. 2001;50:630–6.

    Article  CAS  PubMed  Google Scholar 

  16. Forsblom CM, Kanninen T, Lehtovirta M, Saloranta C, Groop LC. Heritability of albumin excretion rate in families of patients with type II diabetes. Diabetologia. 1999;42:1359–66.

    Article  CAS  PubMed  Google Scholar 

  17. Faronato PP, Maioli M, Tonolo G, Brocco E, Noventa F, Piarulli F, et al. Clustering of albumin excretion rate abnormalities in Caucasian patients with NIDDM. The Italian NIDDM Nephropathy Study Group. Diabetologia. 1997;40:816–23.

    Article  CAS  PubMed  Google Scholar 

  18. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26:1553–79.

    Article  PubMed  Google Scholar 

  19. Kleiger RE, Miller JP, Bigger Jr JT, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J of Cardiol. 1987;59:256–62.

    Article  CAS  Google Scholar 

  20. Huikuri HV, Makikallio TH, Airaksinen KE, Seppanen T, Puukka P, Raiha IJ, et al. Power-law relationship of heart rate variability as a predictor of mortality in the elderly. Circulation. 1998;97:2031–6.

    Article  CAS  PubMed  Google Scholar 

  21. Cowan MJ. Measurement of heart rate variability. West J Nurs Res. 1995;17:32–48.

    Article  CAS  PubMed  Google Scholar 

  22. Fouad FM, Tarazi RC, Ferrario CM, Fighaly S, Alicandri C. Assessment of parasympathetic control of heart rate by a noninvasive method. Am J Physiol. 1984;246:H838–42.

    CAS  PubMed  Google Scholar 

  23. Saeki Y, Atogami F, Takahashi K, Yoshizawa T. Reflex control of autonomic function induced by posture change during the menstrual cycle. J Auton Nerv Syst. 1997;66:69–74.

    Article  CAS  PubMed  Google Scholar 

  24. Park MK, Watanuki S. Specific physiological responses in women with severe primary dysmenorrhea during the menstrual cycle. J Physiol Anthropol Appl Human Sci. 2005;24:601–9.

    Article  PubMed  Google Scholar 

  25. Berger RD, Saul JP, Cohen RJ. Transfer function analysis of autonomic regulation. I. Canine atrial rate response. Am J Physiol. 1989;256:H142–52.

    CAS  PubMed  Google Scholar 

  26. Kamen PW, Tonkin AM. Application of the Poincare plot to heart rate variability: a new measure of functional status in heart failure. Aust N Z J Med. 1995;25:18–26.

    Article  CAS  PubMed  Google Scholar 

  27. Brennan M, Palaniswami M, Kamen P. Poincare plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol. 2002;283:H1873–86.

    Article  CAS  PubMed  Google Scholar 

  28. Otzenberger H, Gronfier C, Simon C, Charloux A, Ehrhart J, Piquard F, et al. Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am J Physiol. 1998;275:H946–50.

    CAS  PubMed  Google Scholar 

  29. Thomas F, Balkau B, Vauzelle-Kervroedan F, Papoz L. Maternal effect and familial aggregation in NIDDM. The CODIAB Study. CODIAB-INSERM-ZENECA Study Group. Diabetes. 1994;43:63–7.

    Article  CAS  PubMed  Google Scholar 

  30. Bo S, Cavallo-Perin P, Gentile L, Repetti E, Pagano G. Influence of a familial history of diabetes on the clinical characteristics of patients with Type 2 diabetes mellitus. Diabet Med. 2000;17:538–42.

    Article  CAS  PubMed  Google Scholar 

  31. Papazafiropoulou A, Sotiropoulos A, Skliros E, Kardara M, Kokolaki A, Apostolou O, et al. Familial history of diabetes and clinical characteristics in Greek subjects with type 2 diabetes. BMC Endocr Disord. 2009;9:12–8.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Festa A, D’Agostino Jr R, Hales CN, Mykkanen L, Haffner SM. Heart rate in relation to insulin sensitivity and insulin secretion in non-diabetic subjects. Diabetes Care. 2000;23:624–8.

    Article  CAS  PubMed  Google Scholar 

  33. Singh JP, Larson MG, O’Donnell CJ, Wilson PF, Tsuji H, Lloyd-Jones DM, et al. Association of hyperglycemia with reduced heart rate variability (the Framingham Heart Study). Am J Cardiol. 2000;86:309–12.

    Article  CAS  PubMed  Google Scholar 

  34. Panzer C, Lauer MS, Brieke A, Blackstone E, Hoogwerf B. Association of fasting plasma glucose with heart rate recovery in healthy adults: a population-based study. Diabetes. 2002;51:803–7.

    Article  CAS  PubMed  Google Scholar 

  35. Carnethon MR, Golden SH, Folsom AR, Haskell W, Liao D. Prospective investigation of autonomic nervous system function and the development of type 2 diabetes: the Atherosclerosis Risk in Communities Study, 1987–1998. Circulation. 2003;107:2190–5.

    Article  PubMed  Google Scholar 

  36. Carnethon MR, Jacobs Jr DR, Sidney S, Liu K. Influence of autonomic nervous system dysfunction on the development of type 2 diabetes: the CARDIA study. Diabetes Care. 2003;26:3035–41.

    Article  PubMed  Google Scholar 

  37. Mirsky IA, Futterman P, Broh-Kahn RH. The quantitative measurement of vibratory perception in subjects with and without diabetes mellitus. J Lab Clin Med. 1953;41:221–35.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Goit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goit, R.K., Paudel, B.H. & Khadka, R. Heart rate variability and vibration perception threshold in healthy young adults with parental history of type 2 diabetes mellitus. Int J Diabetes Dev Ctries 35, 593–597 (2015). https://doi.org/10.1007/s13410-014-0200-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-014-0200-4

Keywords

Navigation