Skip to main content
Log in

Structural and electronic investigation of metal-semiconductor hybrid tetrapod hetero-structures

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

This article highlights the new electronic properties of tetrapod hetero-structures with metal Au core and semiconductor CdSe arms, which is one of the new classes of hybrid metal-semiconductor nanostructures. From the analysis of XRD, HRTEM, HAADF-STEM images, and EDAX line-scan studies, the growth mechanism of all these hetero-structures is proposed. These findings are important from the basic fundamental aspects of understanding the shape control of hetero-structures. Scanning tunneling spectroscopic study confirms the coulomb staircase-like features near Au which is characteristic of Au nanoparticles and the gap increases as we move the tip towards CdSe. Analysis suggests that the resonance tunneling occurs between valance band edge (conduction band edge) of CdSe and coulomb stairs of Au dot. These tetrapod hetero-structures could pave the way for designing new optical-based materials for developing new challenging photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vaneski A, Susha AS, Rodriguez-Fernandez J, Berr M, Jaeckel F, Feldmann J, Rogach AL (2010) roperties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825

    Article  Google Scholar 

  2. Elmalem E, Saunders AE, Costi R, Salant A, Banin U (2008) Growth of photocatalytic CdSe-Pt nanorods and nanonets. Adv Mater 20:4312–4317

    Article  Google Scholar 

  3. Li YQ, Guan LY, Zhang HL, Chen J, Lin S, Ma ZY, Zhao YD (2010) Distance-dependent metal-enhanced quantum dots fluorescence analysis in solution by capillary electrophoresis and its application to DNA detection. Anal Chem 83:4103–4109

    Article  Google Scholar 

  4. Plante JLI, Habas SE, Yuhas BD, Gargas DJ, Mokari T (2009) Interfacing metal nanoparticles with semiconductor nanowires. Chem Mater 21:3662–3667

    Article  Google Scholar 

  5. Costi R, Saunders Aaron E, Elmalem E, Salant A, Banin U (2008) Visible light-induced charge retention and photocatalysis with hybrid CdSe−Au nanodumbbells. Nano Lett 8:637

    Article  Google Scholar 

  6. Zhang J, Tang Y, Lee K, Ouyang M (2010) Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science 327:1634–1638

  7. Tian ZQ, Zhang ZL, Jiang P, Zhang MX, Xie H-Y, Pang DW (2009) Core/shell structured noble metal (alloy)/cadmium selenide nanocrystals. Chem Mater 21:3039–3041

    Article  Google Scholar 

  8. Lee J, Govorov AO, Dulka J, Kotov NA (2004) Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon-exciton interactions, luminescence enhancement, and collective effects. Nano Lett 4:2323–2330

    Article  Google Scholar 

  9. Haldar KK, Sen T, Patra A (2010) Metal conjugated semiconductor hybrid nanoparticle-based fluorescence resonance energy transfer. J Phys Chem C 114:4869–4874

    Article  Google Scholar 

  10. Zhang J, Tang Y, Lee K, Ouyang M (2010) Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature 466:91–95

    Article  Google Scholar 

  11. Yong KT, Sahoo Y, Swihart MT, Prasad PN (2006) Growth of CdSe quantum rods and multipods seeded by noble-metal nanoparticles. Adv Mater 18:1978–1982

    Article  Google Scholar 

  12. Haldar KK, Kundu S, Patra A (2014) Non-radiative relaxation and rectification behavior of metal/semiconductor tetrapod heterostructures. Appl Phys Lett 104:063110

    Article  Google Scholar 

  13. Mokari T, Rothenberg E, Popov I, Costi R, Banin U (2004) Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304:1787–1790

  14. Sitt A, Hadar I, Banin U (2013) Band-gap engineering, optoelectronic properties and applications of colloidal heterostructured semiconductor nanorods. Nano Today 8:494

    Article  Google Scholar 

  15. Steiner D, Mokari T, Banin U, Millo O (2005) Electronic structure of metal-semiconductor nanojunctions in gold CdSe nanodumbbells. Phys Rev Lett 95:056805/1

    Article  Google Scholar 

  16. Millo O, Katz D, Steiner D, Rothenberg E, Mokari T, Kazes M, Banin U (2004) Charging and quantum size effects in tunneling and optical spectroscopy of CdSe nanorods. Nanotech 15:R1–R6

    Article  Google Scholar 

  17. Wang B, Wang K, Lu W, Wang H, Li Z, Yang J, Hou JG (2003) Effects of discrete energy levels on single-electron tunneling in coupled metal particles. Appl Phys Lett 82:3767–3769

    Article  Google Scholar 

  18. Carbone L, Cozzoli PD (2010) Colloidal heterostructured nanocrystals: synthesis and growth mechanisms. Nano Today 5:449

    Article  Google Scholar 

  19. Casavola M, Falqui A, García MA, García-Hernández M, Giannini C, Cingolani R, Cozzoli PD (2009) Exchange-coupled bimagnetic cobalt/iron oxide branched nanocrystal heterostructures. Nano Lett 9:366

    Article  Google Scholar 

  20. Deng X, Yang D, Tan G, Li X, Zhang J, Liu Q, Zhang H, Mellors NJ, Xue D, Peng Y (2014) Bimagnetic h-Co/h-CoO nanotetrapods: preparation, nanoscale characterization, three-dimensional architecture and their magnetic properties. Nanoscale 6:13710

    Article  Google Scholar 

  21. Shi W, Zeng H, Sahoo Y, Ohulchanskyy Tymish Y, Ding Y, Wang Zhong L, Swihart M, Prasad PN (2006) A general approach to binary and ternary hybrid nanocrystals. Nano Lett 6:875–881

    Article  Google Scholar 

  22. Haldar KK, Pradhan N, Patra A (2013) Formation of heteroepitaxy in different shapes of Au–CdSe metal–semiconductor hybrid nanostructures. Small 9:3424

    Article  Google Scholar 

  23. Haldar KK, Sinha G, Lahtinen J, Patra A (2012) Hybrid colloidal Au-CdSe pentapod heterostructures synthesis and their photocatalytic properties. ACS Appl Mater Interfaces 4:6266–6272

    Article  Google Scholar 

  24. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc, Chem Commun 801–802. doi:10.1039/C39940000801

  25. de Paiva R, Felice DR (2008) Atomic and electronic structure at Au/CdSe interfaces. ACS Nano 2:2225–2236

    Article  Google Scholar 

  26. Figuerola A, van Huis M, Zanella M, Genovese A, Marras S, Falqui A, Zandbergen Henny W, Cingolani R, Manna L (2010) Epitaxial CdSe-Au nanocrystal heterostructures by thermal annealing. Nano Lett 10:3028–3036

    Article  Google Scholar 

  27. Guardia P, Korobchevskaya K, Casu A, Genovese A, Manna L, Comin A (2013) Plasmon dynamics in colloidal Au2Cd alloy-CdSe Core/Shell nanocrystals. ACS Nano 7:1045–1053

    Article  Google Scholar 

Download references

Acknowledgements

The research work was funded by research seed money to Haldar KK from the Central University of Punjab, Bathinda, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kanta Haldar.

Electronic supplementary material

Details of experimental and characterization procedure of Au/CdSe nanotetrapod. Figure S1 shows the TEM images of AuSe nanoparticles. Figure S2 presents the TEM-EDX analysis of AuSe.

ESM 1

(DOCX 389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haldar, K.K., Muley, V.Y., Datar, S. et al. Structural and electronic investigation of metal-semiconductor hybrid tetrapod hetero-structures. Gold Bull 50, 105–110 (2017). https://doi.org/10.1007/s13404-017-0198-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-017-0198-8

Keywords

Navigation