Skip to main content

Advertisement

Log in

Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Glioblastomas (GBM) comprise 17% of all primary brain tumors. These tumors are extremely aggressive due to their infiltrative capacity and chemoresistance, with glial-to-mesenchymal transition (GMT) proteins playing a prominent role in tumor invasion. One compound that has recently been used to reduce the expression of these proteins is shikonin (SHK), a naphthoquinone with anti-tumor properties. Temozolomide (TMZ), the most commonly used chemotherapeutic agent in GBM treatment, has so far not been studied in combination with SHK. Here, we investigated the combined effects of these two drugs on the proliferation and motility of GBM-derived cells.

Methods

The cytotoxic and proliferative effects of SHK and TMZ on human GBM-derived cells were tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), Ki67 staining and BrdU incorporation assays. The migration capacities of these cells were evaluated using a scratch wound assay. The expression levels of β3 integrin, metalloproteinases (MMPs) and GMT-associated proteins were determined by Western blotting and immunocytochemistry.

Results

We found that GBM-derived cells treated with a combination of SHK and TMZ showed decreases in their proliferation and migration capacities. These decreases were followed by the suppression of GMT through a reduction of β3 integrin, MMP-2, MMP-9, Slug and vimentin expression via inactivation of PI3K/AKT signaling.

Conclusion

From our results we conclude that dual treatment with SHK and TMZ may constitute a powerful new tool for GBM treatment by reducing therapy resistance and tumor recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F.B. Furnari, T. Fenton, R.M. Bachoo, A. Mukasa, J.M. Stommel, A. Stegh, W.C. Hahn, K.L. Ligon, D.N. Louis, C. Brennan, L. Chin, R.A. DePinho, W.K. Cavenee, Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes. Dev. 21, 2683–2710 (2007). doi:10.1101/gad.1596707

    Article  CAS  PubMed  Google Scholar 

  2. F.R. Lima, S.A. Kahn, R.C. Soletti, D. Biasoli, T. Alves, A.C. da Fonseca, C. Garcia, L. Romao, J. Brito, R. Holanda-Afonso, J. Faria, H. Borges, V. Moura-Neto, Glioblastoma: Therapeutic challenges, what lies ahead. Biochim. Biophys. Acta. 1826, 338–349 (2012). doi:10.1016/j.bbcan.2012.05.004

    CAS  PubMed  Google Scholar 

  3. R. Stupp, M. E. Hegi, W. P. Mason, M. J. van den Bent, M. J. Taphoorn, R. C. Janzer, S. K. Ludwin, A. Allgeier, B. Fisher, K. Belanger, P. Hau, A. A. Brandes, J. Gijtenbeek, C. Marosi, C. J. Vecht, K. Mokhtari, P. Wesseling, S. Villa, E. Eisenhauer, T. Gorlia, M. Weller, D. Lacombe, J. G. Cairncross, R. O. Mirimanoff, European Organisation for Research, Treatment of Cancer Brain Tumour and Radiation Oncology Groups, National Cancer Institute of Canada Clinical Trials Group. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet. Oncol. 10, 459–466 (2009) doi: 10.1016/S1470–2045(09)70025–7

  4. S.A. Kahn, D. Biasoli, C. Garcia, L.H. Geraldo, B. Pontes, M. Sobrinho, A.C. Frauches, L. Romao, R.C. Soletti, S. Assuncao Fdos, F. Tovar-Moll, J.M. de Souza, F.R. Lima, G. Anderluh, V. Moura-Neto, Equinatoxin II potentiates temozolomide- and etoposide-induced glioblastoma cell death. Current. Top. Med. Chem. 12, 2082–2093 (2012)

    Article  CAS  Google Scholar 

  5. V. Moura-Neto, L. Campanati, D. Matias, C.M. Pereira, C. Freitas, J. M. Coelho-Aguiar, T.C.L.S. Spohr, A.L. Tavares-Gomes, D. Pinheiro-Aguiar, S.A. Kahn, J. Balça-Silva, B. Pontes, I. Porto-Carreiro, J. Faria, R.A.P. Martins, S. Lima-Costa, M. F. Dias-Costa, M.C. Lopes, F.R.S. Lima. Glioblastoma and the special role of adhesion molecules in their invasion, ed. by A. Sedo, R. Mentlein (Springer-Verlag Wien, 2014), p. 293. doi:10.1007/978–3–7091-1431-5

  6. H.J. Anderson, D.S. Galileo, Small-molecule inhibitors of FGFR, integrins and FAK selectively decrease L1CAM-stimulated glioblastoma cell motility and proliferation. Cell. Oncol. 39, 229–242 (2016). doi:10.1007/s13402-016-0267-7

  7. B.N. Smith, N.A. Bhowmick, Role of EMT in metastasis and therapy resistance. J. Clin. Med. 5, pii:E17 (2016). doi:10.3390/jcm5020017

  8. J.S. Desgrosellier, D.A. Cheresh, Integrins in cancer: Biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010). doi:10.1038/nrc2748

  9. F.A. Mamuya, M.K. Duncan, aV integrins and TGF-β-induced EMT: A circle of regulation. J. Cell. Mol. Med. 16, 445–455 (2012). doi:10.1111/j.1582-4934.2011.01419.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C.Y. Liu, H.H. Lin, M.J. Tang, Y.K. Wang. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 6, 15966–15983 (2015) doi:10.18632/oncotarget.3862

  11. L.J. McCawley, L.M. Matrisian, Matrix metalloproteinases: Multifunctional contributors to tumor progression. Mol. Med. Today 6, 149–156 (2000). doi:10.1016/S1357-4310(00)01686-5

  12. E. Godefroy, A. Moreau-Aubry, E. Diez, B. Dreno, F. Jotereau, Y. Guilloux. alpha v beta3-dependent cross-presentation of matrix metalloproteinase-2 by melanoma cells gives rise to a new tumor antigen. J. Exp. Med. 202, 61–72 (2005) doi: 10.1084/jem.20042138

  13. R.C. Soletti, G.P. de Faria, J. Vernal, H. Terenzi, G. Anderluh, H.L. Borges, V. Moura-Neto, N.H. Gabilan, Potentiation of anticancer-drug cytotoxicity by sea anemone pore-forming proteins in human glioblastoma cells. Anti-Cancer Drugs 19, 517–525 (2008). doi:10.1097/CAD.0b013e3282faa704

  14. B.L. Santos, M.N. Oliveira, P.L. Coelho, B.P. Pitanga, A.B. da Silva, T. Adelita, V.D. Silva, F. Costa Mde. R.S. El-Bacha, M. Tardy, H. Chneiweiss, M.P. Junier, V. Moura-Neto, S.L. Costa. Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chem. Biol. Interact. 242, 123–138 (2015) doi: 10.1016/j.cbi.2015.07.014

  15. J. Balca-Silva, D. Matias, A. do Carmo, H. Girao, V. Moura-Neto, A.B. Sarmento-Ribeiro, M.C. Lopes. Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines. Biochim. Biophys. Acta 1850, 722–732 (2015) doi:10.1016/j.bbagen.2014.12.022

  16. X. Chen, L. Yang, J.J. Oppenheim, M.Z. Howard, Cellular pharmacology studies of shikonin derivatives. Phytother. Res. 16, 199–209 (2002). doi:10.1002/ptr.1100

    Article  CAS  PubMed  Google Scholar 

  17. Y. Chen, L. Zheng, J. Liu, Z. Zhou, X. Cao, X. Lv, F. Chen, Shikonin inhibits prostate cancer cells metastasis by reducing matrix metalloproteinase-2/−9 expression via AKT/mTOR and ROS/ERK1/2 pathways. Int. Immunopharmacol. 21, 447–455 (2014). doi:10.1016/j.intimp.2014.05.026

    Article  CAS  PubMed  Google Scholar 

  18. H. Wang, C. Wu, S. Wan, H. Zhang, S. Zhou, G. Liu, Shikonin attenuates lung cancer cell adhesion to extracellular matrix and metastasis by inhibiting integrin β1 expression and the ERK1/2 signaling pathway. Toxicology 308, 104–112 (2013). doi:10.1016/j.tox.2013.03.015

  19. Q. Zhao, N. Kretschmer, R. Bauer, T. Efferth, Shikonin and its derivatives inhibit the epidermal growth factor receptor signaling and synergistically kill glioblastoma cells in combination with erlotinib. Int. J. Cancer 137, 1446–1456 (2015). doi:10.1002/ijc.29483

  20. F.L. Zhang, P. Wang, Y.H. Liu, L.B. Liu, X.B. Liu, Z. Li, Y.X. Xue, Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS One 8, e81815 (2013). doi:10.1371/journal.pone.0081815

  21. D. Hong, S.Y. Jang, E.H. Jang, B. Jung, I.H. Cho, M.J. Park, S.Y. Jeong, J.H. Kim, Shikonin as an inhibitor of the LPS-induced epithelial-to-mesenchymal transition in human breast cancer cells. Int. J. Mol. Med. 36, 1601–1606 (2015). doi:10.3892/ijmm.2015.2373

    CAS  PubMed  Google Scholar 

  22. R. Mahabir, M. Tanino, A. Elmansuri, L. Wang, T. Kimura, T. Itoh, Y. Ohba, H. Nishihara, H. Shirato, M. Tsuda, S. Tanaka, Sustained elevation of snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro-Oncology 16, 671–685 (2014). doi:10.1093/neuonc/not239

  23. J. Faria, L. Romao, S. Martins, T. Alves, F.A. Mendes, G.P. de Faria, R. Hollanda, C. Takiya, L. Chimelli, V. Morandi, J.M. de Souza, J.G. Abreu, V. Moura Neto, Interactive properties of human glioblastoma cells with brain neurons in culture and neuronal modulation of glial laminin organization. Differentiation 74, 562–572 (2006). doi:10.1111/j.1432-0436.2006.00090.x

  24. L.F. Romao, F.A. Mendes, N.M. Feitosa, J.C. Faria, J.M. Coelho-Aguiar, J.M. de Souza, V. Moura-Neto, J.G. Abreu, Connective tissue growth factor (CTGF/CCN2) is negatively regulated during neuron-glioblastoma interaction. PLoS One 8, e55605 (2013). doi:10.1371/journal.pone.0055605

  25. C.C. Liang, A.Y. Park, J.L. Guan, In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007). doi:10.1038/nprot.2007.30

  26. A. Boudaoud, A. Burian, D. Borowska-Wykret, M. Uyttewaal, R. Wrzalik, D. Kwiatkowska, O. Hamant, FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nat. Protoc. 9, 457–463 (2014). doi:10.1038/nprot.2014.024

    Article  CAS  PubMed  Google Scholar 

  27. H. Towbin, T. Staehelin, J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Biotechnology 24, 145–149 (1979)

  28. K.A. McDowell, G.J. Riggins, G.L. Gallia, Targeting the AKT pathway in glioblastoma. Curr. Pharm. Des. 17, 2411–2420 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. N. Fenouille, M. Tichet, M. Dufies, A. Pottier, A. Mogha, J.K. Soo, S. Rocchi, A. Mallavialle, M.D. Galibert, A. Khammari, J.P. Lacour, R. Ballotti, M. Deckert, S. Tartare-Deckert, The epithelial-mesenchymal transition (EMT) regulatory factor SLUG (SNAI2) is a downstream target of SPARC and AKT in promoting melanoma cell invasion. PLoS One 7, e40378 (2012). doi:10.1371/journal.pone.0040378

  30. Y. Iwadate, Epithelial-mesenchymal transition in glioblastoma progression. Oncol. Lett. 11, 1615–1620 (2016). doi:10.3892/ol.2016.4113

    PubMed  PubMed Central  Google Scholar 

  31. W.Y. Cheng, J.J. Kandel, D.J. Yamashiro, P. Canoll, D. Anastassiou, A multi-cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma. PLoS One 7, e34705 (2012). doi:10.1371/journal.pone.0034705

  32. E.M. Goellner, B. Grimme, A.R. Brown, Y.C. Lin, X.H. Wang, K.F. Sugrue, L. Mitchell, R.N. Trivedi, J.B. Tang, R.W. Sobol, Overcoming temozolomide resistance in glioblastoma via dual inhibition of NAD+ biosynthesis and base excision repair. Cancer Res. 71, 2308–2317 (2011). doi:10.1158/0008-5472.CAN-10-3213

  33. H. Wu, J. Xie, Q. Pan, B. Wang, D. Hu, X. Hu, Anticancer agent shikonin is an incompetent inducer of cancer drug resistance. PLoS One 8, e52706 (2013). doi:10.1371/journal.pone.0052706

  34. W. Li, J. Liu, K. Jackson, R. Shi, Y. Zhao, Sensitizing the therapeutic efficacy of taxol with shikonin in human breast cancer cells. PLoS One 9, e94079 (2014). doi:10.1371/journal.pone.0094079

    Article  PubMed  PubMed Central  Google Scholar 

  35. M.E. Hegi, A.C. Diserens, T. Gorlia, M.F. Hamou, N. de Tribolet, M. Weller, J.M. Kros, J.A. Hainfellner, W. Mason, L. Mariani, J.E. Bromberg, P. Hau, R.O. Mirimanoff, J.G. Cairncross, R.C. Janzer, R. Stupp, MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005). doi:10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  36. C. Kubelt, K. Hattermann, S. Sebens, H.M. Mehdorn, J. Held-Feindt, Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. Int. J. Oncol. 46, 2515–2525 (2015). doi:10.3892/ijo.2015.2944

    CAS  PubMed  Google Scholar 

  37. Y.W. Heng, H.H. Lim, T. Mina, P. Utomo, S. Zhong, C.T. Lim, C.G. Koh, TPPP acts downstream of RhoA-ROCK-LIMK2 to regulate astral microtubule organization and spindle orientation. J. Cell. Sci. 125, 1579–1590 (2012). doi:10.1242/jcs.096818

    Article  CAS  PubMed  Google Scholar 

  38. M. Silginer, M. Weller, U. Ziegler, P. Roth, Integrin inhibition promotes atypical anoikis in glioma cells. Cell. Death Dis. 5, e1012 (2014). doi:10.1038/cddis.2013.543

  39. M. Rolli, E. Fransvea, J. Pilch, A. Saven, B. Felding-Habermann, Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc. Natl. Acad. Sci. U S A 100, 9482–9487 (2003). doi:10.1073/pnas.1633689100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. S.S. Lakka, C.S. Gondi, N. Yanamandra, W.C. Olivero, D.H. Dinh, M. Gujrati, J.S. Rao, Inhibition of cathepsin B and MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene 23, 4681–4689 (2004). doi:10.1038/sj.onc.1207616

  41. C. Chetty, S.S. Lakka, P. Bhoopathi, J.S. Rao, MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int. J. Cancer 127, 1081–1095 (2010). doi:10.1002/ijc.25134

  42. A.V. Fonseca, D. Corbeil, The hematopoietic stem cell polarization and migration: A dynamic link between RhoA signaling pathway, microtubule network and ganglioside-based membrane microdomains. Commun. Integr. Biol. 4, 201–204 (2011). doi:10.4161/cib.4.2.14419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. U. Jadhav, S. Chigurupati, S.S. Lakka, S. Mohanam, Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int. J. Oncol. 25, 1407–1414 (2004)

    CAS  PubMed  Google Scholar 

  44. Y. Jiao, X. Feng, Y. Zhan, R. Wang, S. Zheng, W. Liu, X. Zeng, Matrix metalloproteinase-2 promotes αvβ3 integrin-mediated adhesion and migration of human melanoma cells by cleaving fibronectin. PLoS One 7, e41591 (2012). doi:10.1371/journal.pone.0041591

  45. J.M. Yang, Z. Xu, H. Wu, H. Zhu, X. Wu, W.N. Hait, Overexpression of extracellular matrix metalloproteinase inducer in multidrug resistant cancer cells. Mol. Cancer Res. 1, 420–427 (2003)

  46. F.Y. Zhang, Y. Hu, Z.Y. Que, P. Wang, Y.H. Liu, Z.H. Wang, Y.X. Xue, Shikonin inhibits the migration and invasion of human glioblastoma cells by targeting phosphorylated β-catenin and phosphorylated PI3K/Akt: A potential mechanism for the anti-glioma efficacy of a traditional Chinese herbal medicine. Int. J. Mol. Sci. 16, 23823–23848 (2015). doi:10.3390/ijms161023823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. P.L. Wei, C.C. Tu, C.H. Chen, Y.S. Ho, C.T. Wu, H.Y. Su, W.Y. Chen, J.J. Liu, Y.J. Chang, Shikonin suppresses the migratory ability of hepatocellular carcinoma cells. J. Agric. Food Chem. 61, 8191–8197 (2013). doi:10.1021/jf4009586

Download references

Acknowledgements

This study was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ), Pró-Saúde Associação Beneficente de Assistência Social e Hospitalar and Ary Frauzino Foundation for Cancer Research. It was also supported by the Portuguese agencies FEDER funds through the Operational Programme Factors Competitiveness COMPETE, and National Funds through the FCT Fundação para a Ciência e Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivaldo Moura-Neto.

Ethics declarations

Conflict of interest

We confirm that this manuscript has been approved by all authors and that there are no known conflicts of interest associated with this publication.

Electronic supplementary material

Supplementary Fig. 1

mRNA expression levels for MGMT. U118-MG and GBM02 cells were cultured under standard conditions (at 37 °C, 5% CO2, 10% FBS). Total RNA was extracted using a PureLink RNA Mini Kit following the manufacturer’s instructions. Five micrograms of total RNA and a High-Capacity cDNA Reverse Transcription Kit were used to perform cDNA synthesis. Astrocytes were used as positive control. The qPCR reaction was performed in quadruplicate using the MGMT Taqman Probe (Hs04419844_s1) and GAPDH (array plate) as endogenous control. To calculate the relative fold variation in mRNA expression, the 2-ΔΔCT method was used. The results show that GBM02 cells exhibit ~zero MGMT expression and U118-MG cells ~15% MGMT expression relative to astrocytes. The MGMT expression differed statistically between the two GBM cell lines. Each value represents the ±SD, *p < 0.05. (GIF 14 kb)

High Resolution Image (TIFF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matias, D., Balça-Silva, J., Dubois, L.G. et al. Dual treatment with shikonin and temozolomide reduces glioblastoma tumor growth, migration and glial-to-mesenchymal transition. Cell Oncol. 40, 247–261 (2017). https://doi.org/10.1007/s13402-017-0320-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-017-0320-1

Keywords

Navigation