Skip to main content

Advertisement

Log in

Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens.

Conclusions

A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HSCs:

Hematopoietic stem cells

HPCs:

Hematopoietic progenitor cells

LSCs:

Leukemic stem cells

AML:

Acute myeloid leukemia

CML:

Chronic myeloid leukemia

ALL:

Acute lymphoblastic leukemia

CML:

Chronic myeloid leukemia

CFCs:

Colony-forming cells

CDC:

Complement-dependent cytotoxicity

ADCC:

Antibody-dependent cellular cytotoxicity

ATP:

Adenosine triphosphate

FLT3:

Fms-like tyrosine kinase 3

ATRA:

All-trans retinoic acid

LXR:

Liver X receptor

DFO:

Deferoxamine

DFX:

Deferasirox

EP:

Eltrombopag

TPO-R:

Thrombopoietin receptor

RNS:

Reactive nitrogen species

BCL-2:

B-cell lymphoma 2

HDAC:

Histone deacetylase

DNMT:

DNA methyltransferase

PRC2:

Polycomb repressive complex 2

NF-kB:

Nuclear factor kappa B

PTL:

Parthenolide

PI3K:

Phosphatidylinositol 3 kinase

DNA-PK:

DNA-dependent protein kinase

MRP1:

Multidrug resistance-associated protein 1

FOXOs:

Forkhead transcription factors

HSPs:

Heat shock proteins

GMPs:

Granulocyte macrophage progenitors

Hh:

Hedgehog

PTCH:

Patched

TICs:

Tumor-initiating cells

TKIs:

Tyrosine kinase inhibitors

References

  1. S.J. Szilvassy, The biology of hematopoietic stem cells. Arch. Med. Res. 34, 446–460 (2003). doi:10.1016/j.arcmed.2003.06.004

    Article  CAS  PubMed  Google Scholar 

  2. A.W. Wognum, A.C. Eaves, T.E. Thomas, Identification and isolation of hematopoietic stem cells. Arch. Med. Res. 34, 461–475 (2003). doi:10.1016/j.arcmed.2003.09.008

    Article  CAS  PubMed  Google Scholar 

  3. D.C. Taussig, F. Miraki-Moud, F. Anjos-Afonso, D.J. Pearce, K. Allen, C. Ridler, D. Lillington, H. Oakervee, J. Cavenagh, S.G. Agrawal, T.A. Lister, J.G. Gribben, D. Bonnet, Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 112, 568–575 (2008). doi:10.1182/blood-2007-10-118331

    Article  CAS  PubMed  Google Scholar 

  4. D.C. Taussig, J. Vargaftig, F. Miraki-Moud, E. Griessinger, K. Sharrock, T. Luke, D. Lillington, H. Oakervee, J. Cavenagh, S.G. Agrawal, T.A. Lister, J.G. Gribben, D. Bonnet, Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood 115, 1976–1984 (2010). doi:10.1182/blood-2009-02-206565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Aref, O. Salama, Y. Al-Tonbary, M. Fouda, A. Menessy, M. El-Sherbiny, L and E selectins in acute myeloid leukemia: expression, clinical relevance and relation to patient outcome. Hematology 7, 83–87 (2002). doi:10.1080/10245330290028579

    Article  CAS  PubMed  Google Scholar 

  6. A.J. Gentles, S.K. Plevritis, R. Majeti, A.A. Alizadeh, Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 304, 2706–2715 (2010). doi:10.1001/jama.2010.1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. F. Ishikawa, S. Yoshida, Y. Saito, A. Hijikata, H. Kitamura, S. Tanaka, R. Nakamura, T. Tanaka, H. Tomiyama, N. Saito, M. Fukata, T. Miyamoto, B. Lyons, K. Ohshima, N. Uchida, S. Taniguchi, O. Ohara, K. Akashi, M. Harada, L.D. Shultz, Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat. Biotechnol. 25, 1315–1321 (2007). doi:10.1038/nbt1350

    Article  CAS  PubMed  Google Scholar 

  8. T. Holyoake, X. Jiang, C. Eaves, A. Eaves, Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94, 2056–2064 (1999)

    CAS  PubMed  Google Scholar 

  9. C. Zhao, A. Chen, C.H. Jamieson, M. Fereshteh, A. Abrahamsson, J. Blum, H.Y. Kwon, J. Kim, J.P. Chute, D. Rizzieri, M. Munchhof, T. VanArsdale, P.A. Beachy, T. Reya, Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458, 776–779 (2009). doi:10.1038/nature07737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M.L. Guzman, C.F. Swiderski, D.S. Howard, B.A. Grimes, R.M. Rossi, S.J. Szilvassy, C.T. Jordan, Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl. Acad. Sci. U. S. A. 99, 16220–16225 (2002). doi:10.1073/pnas.252462599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. C.T. Jordan, D. Upchurch, S.J. Szilvassy, M.L. Guzman, D.S. Howard, A.L. Pettigrew, T. Meyerrose, R. Rossi, B. Grimes, D.A. Rizzieri, S.M. Luger, G.L. Phillips, The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14, 1777–1784 (2000)

    Article  CAS  PubMed  Google Scholar 

  12. N. Hosen, C.Y. Park, N. Tatsumi, Y. Oji, H. Sugiyama, M. Gramatzki, A.M. Krensky, I.L. Weissman, CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc. Natl. Acad. Sci. U. S. A. 104, 11008–11013 (2007). doi:10.1073/pnas.0704271104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. Majeti, M.P. Chao, A.A. Alizadeh, W.W. Pang, S. Jaiswal, K.D. Gibbs Jr., N. van Rooijen, I.L. Weissman, CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009). doi:10.1016/j.cell.2009.05.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Y. Kikushige, T. Shima, S. Takayanagi, S. Urata, T. Miyamoto, H. Iwasaki, K. Takenaka, T. Teshima, T. Tanaka, Y. Inagaki, K. Akashi, TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell 7, 708–717 (2010). doi:10.1016/j.stem.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  15. M.P. Scolnik, R. Morilla, M.M. de Bracco, D. Catovsky, E. Matutes, CD34 and CD117 are overexpressed in AML and may be valuable to detect minimal residual disease. Leuk. Res. 26, 615–619 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. A. Chavez-Gonzalez, E. Dorantes-Acosta, D. Moreno-Lorenzana, A. Alvarado-Moreno, L. Arriaga-Pizano, H. Mayani, Expression of CD90, CD96, CD117, and CD123 on different hematopoietic cell populations from pediatric patients with acute myeloid leukemia. Arch. Med. Res. 45, 343–350 (2014). doi:10.1016/j.arcmed.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  17. J.M. Gerber, B.D. Smith, B. Ngwang, H. Zhang, M.S. Vala, L. Morsberger, S. Galkin, M.I. Collector, B. Perkins, M.J. Levis, C.A. Griffin, S.J. Sharkis, M.J. Borowitz, J.E. Karp, R.J. Jones, A clinically relevant population of leukemic CD34(+)CD38(-) cells in acute myeloid leukemia. Blood 119, 3571–3577 (2012). doi:10.1182/blood-2011-06-364182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Jaras, P. Johnels, N. Hansen, H. Agerstam, P. Tsapogas, M. Rissler, C. Lassen, T. Olofsson, O.W. Bjerrum, J. Richter, T. Fioretos, Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc. Natl. Acad. Sci. U. S. A. 107, 16280–16285 (2010). doi:10.1073/pnas.1004408107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Herrmann, I. Sadovnik, S. Cerny-Reiterer, T. Rulicke, G. Stefanzl, M. Willmann, G. Hoermann, M. Bilban, K. Blatt, S. Herndlhofer, M. Mayerhofer, B. Streubel, W.R. Sperr, T.L. Holyoake, C. Mannhalter, P. Valent, Dipeptidylpeptidase IV (CD26) defines leukemic stem cells (LSC) in chronic myeloid leukemia. Blood 123, 3951–3962 (2014). doi:10.1182/blood-2013-10-536078

    Article  CAS  PubMed  Google Scholar 

  20. M.E. Chamuleau, G.J. Ossenkoppele, A. van Rhenen, L. van Dreunen, S.M. Jirka, A. Zevenbergen, G.J. Schuurhuis, A.A. van de Loosdrecht, High TRAIL-R3 expression on leukemic blasts is associated with poor outcome and induces apoptosis-resistance which can be overcome by targeting TRAIL-R2. Leuk. Res. 35, 741–749 (2011). doi:10.1016/j.leukres.2010.12.032

    Article  CAS  PubMed  Google Scholar 

  21. M. Terwijn, N. Feller, A. van Rhenen, A. Kelder, G. Westra, S. Zweegman, G. Ossenkoppele, G.J. Schuurhuis, Interleukin-2 receptor alpha-chain (CD25) expression on leukaemic blasts is predictive for outcome and level of residual disease in AML. Eur. J. Cancer 45, 1692–1699 (2009). doi:10.1016/j.ejca.2009.02.021

    Article  CAS  PubMed  Google Scholar 

  22. M. Terwijn, W. Zeijlemaker, A. Kelder, A.P. Rutten, A.N. Snel, W.J. Scholten, T. Pabst, G. Verhoef, B. Lowenberg, S. Zweegman, G.J. Ossenkoppele, G.J. Schuurhuis, Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS One 9, e107587 (2014). doi:10.1371/journal.pone.0107587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A.V. Krivtsov, D. Twomey, Z. Feng, M.C. Stubbs, Y. Wang, J. Faber, J.E. Levine, J. Wang, W.C. Hahn, D.G. Gilliland, T.R. Golub, S.A. Armstrong, Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006). doi:10.1038/nature04980

    Article  CAS  PubMed  Google Scholar 

  24. L.I. Shlush, S. Zandi, A. Mitchell, W.C. Chen, J.M. Brandwein, V. Gupta, J.A. Kennedy, A.D. Schimmer, A.C. Schuh, K.W. Yee, J.L. McLeod, M. Doedens, J.J. Medeiros, R. Marke, H.J. Kim, K. Lee, J.D. McPherson, T.J. Hudson, A.M. Brown, F. Yousif, Q.M. Trinh, L.D. Stein, M.D. Minden, J.C. Wang, J.E. Dick, Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014). doi:10.1038/nature13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M.R. Corces-Zimmerman, W.J. Hong, I.L. Weissman, B.C. Medeiros, R. Majeti, Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl. Acad. Sci. U. S. A. 111, 2548–2553 (2014). doi:10.1073/pnas.1324297111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. S. Babashah, Cancer stem cells: emerging concepts and future perspectives in translational oncology (Springer International Publishing, Switzerland, 2015)

    Book  Google Scholar 

  27. P.R. Hamann, L.M. Hinman, I. Hollander, C.F. Beyer, D. Lindh, R. Holcomb, W. Hallett, H.R. Tsou, J. Upeslacis, D. Shochat, A. Mountain, D.A. Flowers, I. Bernstein, Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug. Chem. 13, 47–58 (2002)

    Article  CAS  PubMed  Google Scholar 

  28. A. Takeshita, Efficacy and resistance of gemtuzumab ozogamicin for acute myeloid leukemia. Int. J. Hematol. 97, 703–716 (2013). doi:10.1007/s12185-013-1365-1

    Article  CAS  PubMed  Google Scholar 

  29. A. Dutour, V. Marin, I. Pizzitola, S. Valsesia-Wittmann, D. Lee, E. Yvon, H. Finney, A. Lawson, M. Brenner, A. Biondi, E. Biagi, R. Rousseau, In vitro and in vivo antitumor effect of anti-CD33 chimeric receptor-expressing EBV-CTL against CD33 acute myeloid leukemia. Adv. Hematol. 2012, 683065 (2012). doi:10.1155/2012/683065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. I. Pizzitola, V. Agostoni, E. Cribioli, M. Pule, R. Rousseau, H. Finney, A. Lawson, A. Biondi, E. Biagi, V. Marin, In vitro comparison of three different chimeric receptor-modified effector T-cell populations for leukemia cell therapy. J. Immunother. 34, 469–479 (2011). doi:10.1097/CJI.0b013e31821e763b

    Article  CAS  PubMed  Google Scholar 

  31. M. Feuring-Buske, A.E. Frankel, R.L. Alexander, B. Gerhard, D.E. Hogge, A diphtheria toxin-interleukin 3 fusion protein is cytotoxic to primitive acute myeloid leukemia progenitors but spares normal progenitors. Cancer Res. 62, 1730–1736 (2002)

    CAS  PubMed  Google Scholar 

  32. H.P. Kim, A.E. Frankel, D.E. Hogge, A diphtheria toxin interleukin-3 fusion protein synergizes with tyrosine kinase inhibitors in killing leukemic progenitors from BCR/ABL positive acute leukemia. Leuk. Res. 34, 1035–1042 (2010). doi:10.1016/j.leukres.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  33. L. Jin, E.M. Lee, H.S. Ramshaw, S.J. Busfield, A.G. Peoppl, L. Wilkinson, M.A. Guthridge, D. Thomas, E.F. Barry, A. Boyd, D.P. Gearing, G. Vairo, A.F. Lopez, J.E. Dick, R.B. Lock, Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell 5, 31–42 (2009). doi:10.1016/j.stem.2009.04.018

    Article  CAS  PubMed  Google Scholar 

  34. S.J. Busfield, M. Biondo, M. Wong, H.S. Ramshaw, E.M. Lee, S. Ghosh, H. Braley, C. Panousis, A.W. Roberts, S.Z. He, D. Thomas, L. Fabri, G. Vairo, R.B. Lock, A.F. Lopez, A.D. Nash, Targeting of acute myeloid leukemia in vitro and in vivo with an anti-CD123 mAb engineered for optimal ADCC. Leukemia 28, 2213–2221 (2014). doi:10.1038/leu.2014.128

    Article  CAS  PubMed  Google Scholar 

  35. I. Pizzitola, F. Anjos-Afonso, K. Rouault-Pierre, F. Lassailly, S. Tettamanti, O. Spinelli, A. Biondi, E. Biagi, D. Bonnet, Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia 28, 1596–1605 (2014). doi:10.1038/leu.2014.62

    Article  CAS  PubMed  Google Scholar 

  36. S. Gill, S.K. Tasian, M. Ruella, O. Shestova, Y. Li, D.L. Porter, M. Carroll, G. Danet-Desnoyers, J. Scholler, S.A. Grupp, C.H. June, M. Kalos, Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123, 2343–2354 (2014). doi:10.1182/blood-2013-09-529537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Z. Gadhoum, J. Delaunay, E. Maquarre, L. Durand, V. Lancereaux, J. Qi, J. Robert-Lezenes, C. Chomienne, F. Smadja-Joffe, The effect of anti-CD44 monoclonal antibodies on differentiation and proliferation of human acute myeloid leukemia cells. Leuk. Lymphoma 45, 1501–1510 (2004). doi:10.1080/1042819042000206687

    Article  CAS  PubMed  Google Scholar 

  38. G. Song, X. Liao, L. Zhou, L. Wu, Y. Feng, Z.C. Han, HI44a, an anti-CD44 monoclonal antibody, induces differentiation and apoptosis of human acute myeloid leukemia cells. Leuk. Res. 28, 1089–1096 (2004). doi:10.1016/j.leukres.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  39. L. Jin, K.J. Hope, Q. Zhai, F. Smadja-Joffe, J.E. Dick, Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat. Med. 12, 1167–1174 (2006). doi:10.1038/nm1483

    Article  CAS  PubMed  Google Scholar 

  40. J.L. Berkowitz, J.E. Janik, D.M. Stewart, E.S. Jaffe, M. Stetler-Stevenson, J.H. Shih, T.A. Fleisher, M. Turner, N.E. Urquhart, G.H. Wharfe, W.D. Figg, C.J. Peer, C.K. Goldman, T.A. Waldmann, J.C. Morris, Safety, efficacy, and pharmacokinetics/pharmacodynamics of daclizumab (anti-CD25) in patients with adult T-cell leukemia/lymphoma. Clin. Immunol. 155, 176–187 (2014). doi:10.1016/j.clim.2014.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Cerny, H. Yu, M. Ramanathan, G.D. Raffel, W.V. Walsh, N. Fortier, L. Shanahan, E. O’Rourke, J. Bednarik, B. Barton, A. Kroll-Desrosiers, S. Hao, B. Woda, L. Hutchinson, A.M. Evens, A.G. Rosmarin, R. Nath, Expression of CD25 independently predicts early treatment failure of acute myeloid leukaemia (AML). Br. J. Haematol. 160, 262–266 (2013). doi:10.1111/bjh.12109

    Article  CAS  PubMed  Google Scholar 

  42. G.J.R. J. N. Allan, E. J. Feldman, J. M. Scandura, E. K. Ritchie, L. Lam, W. Xie, H-T Hsu, D. C. Hassane, M. L. Guzman, In 56th ASH Annual Meeting and Exposition, (San Francisco, CA) (2014)

  43. Z. Guo, A. Wang, W. Zhang, M. Levit, Q. Gao, C. Barberis, M. Tabart, J. Zhang, D. Hoffmann, D. Wiederschain, J. Rocnik, F. Sun, J. Murtie, C. Lengauer, S. Gross, B. Zhang, H. Cheng, V. Patel, L. Schio, F. Adrian, M. Dorsch, C. Garcia-Echeverria, S.M. Huang, PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood 124, 1777–1789 (2014). doi:10.1182/blood-2014-01-551234

    Article  CAS  PubMed  Google Scholar 

  44. X. Zhao, S. Singh, C. Pardoux, J. Zhao, E.D. Hsi, A. Abo, W. Korver, Targeting C-type lectin-like molecule-1 for antibody-mediated immunotherapy in acute myeloid leukemia. Haematologica 95, 71–78 (2010). doi:10.3324/haematol.2009.009811

    Article  CAS  PubMed  Google Scholar 

  45. H. Lu, Q. Zhou, V. Deshmukh, H. Phull, J. Ma, V. Tardif, R.R. Naik, C. Bouvard, Y. Zhang, S. Choi, B.R. Lawson, S. Zhu, C.H. Kim, P.G. Schultz, Targeting human C-type lectin-like molecule-1 (CLL1) with a bispecific antibody for immunotherapy of acute myeloid leukemia. Angew. Chem. Int. Ed. Engl. 53, 9841–9845 (2014). doi:10.1002/anie.201405353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. M. Askmyr, H. Agerstam, N. Hansen, S. Gordon, A. Arvanitakis, M. Rissler, G. Juliusson, J. Richter, M. Jaras, T. Fioretos, Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood 121, 3709–3713 (2013). doi:10.1182/blood-2012-09-458935

    Article  CAS  PubMed  Google Scholar 

  47. D.E. Berardi, C. Flumian, P.B. Campodonico, A.J. Urtreger, M.I. Diaz Bessone, A.N. Motter, E.D. Bal de Kier Joffe, E.F. Farias, L.B. Todaro, Myoepithelial and luminal breast cancer cells exhibit different responses to all-trans retinoic acid. Cell. Oncol. 38, 289–305 (2015). doi:10.1007/s13402-015-0230-z

    Article  CAS  Google Scholar 

  48. A. Kakizuka, W.H. Miller Jr., K. Umesono, R.P. Warrell Jr., S.R. Frankel, V.V. Murty, E. Dmitrovsky, R.M. Evans, Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 66, 663–674 (1991)

    Article  CAS  PubMed  Google Scholar 

  49. P.V. Sanchez, S.T. Glantz, S. Scotland, M.T. Kasner, M. Carroll, Induced differentiation of acute myeloid leukemia cells by activation of retinoid X and liver X receptors. Leukemia 28, 749–760 (2014). doi:10.1038/leu.2013.202

    Article  CAS  PubMed  Google Scholar 

  50. S. Grant, ATRA and ATO team up against NPM1. Blood 125, 3369–3371 (2015). doi:10.1182/blood-2015-04-636217

    Article  CAS  PubMed  Google Scholar 

  51. H. El Hajj, Z. Dassouki, C. Berthier, E. Raffoux, L. Ades, O. Legrand, R. Hleihel, U. Sahin, N. Tawil, A. Salameh, K. Zibara, N. Darwiche, M. Mohty, H. Dombret, P. Fenaux, H. de The, A. Bazarbachi, Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood 125, 3447–3454 (2015). doi:10.1182/blood-2014-11-612416

    Article  CAS  PubMed  Google Scholar 

  52. X. Zheng, A. Seshire, B. Ruster, G. Bug, T. Beissert, E. Puccetti, D. Hoelzer, R. Henschler, M. Ruthardt, Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha-positive leukemic stem cells. Haematologica 92, 323–331 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. Y. Jiang, Z.H. Xue, W.Z. Shen, K.M. Du, H. Yan, Y. Yu, Z.G. Peng, M.G. Song, J.H. Tong, Z. Chen, Y. Huang, M. Lubbert, G.Q. Chen, Desferrioxamine induces leukemic cell differentiation potentially by hypoxia-inducible factor-1 alpha that augments transcriptional activity of CCAAT/enhancer-binding protein-alpha. Leukemia 19, 1239–1247 (2005). doi:10.1038/sj.leu.2403734

    Article  CAS  PubMed  Google Scholar 

  54. M. Roth, B. Will, G. Simkin, S. Narayanagari, L. Barreyro, B. Bartholdy, R. Tamari, C.S. Mitsiades, A. Verma, U. Steidl, Eltrombopag inhibits the proliferation of leukemia cells via reduction of intracellular iron and induction of differentiation. Blood 120, 386–394 (2012). doi:10.1182/blood-2011-12-399667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. M. Szwed, A. Laroche-Clary, J. Robert, Z. Jozwiak, Efficacy of doxorubicin-transferrin conjugate in apoptosis induction in human leukemia cells through reactive oxygen species generation. Cell. Oncol. 39, 107–118 (2016). doi:10.1007/s13402-015-0256-2

    Article  CAS  Google Scholar 

  56. J. Liu, X. Wei, Y. Wu, Y. Wang, Y. Qiu, J. Shi, H. Zhou, Z. Lu, M. Shao, L. Yu, L. Tong, Giganteaside D induces ROS-mediated apoptosis in human hepatocellular carcinoma cells through the MAPK pathway. Cell. Oncol. 39, 333–342 (2016). doi:10.1007/s13402-016-0273-9

    Article  CAS  Google Scholar 

  57. T.T. Vo, J. Ryan, R. Carrasco, D. Neuberg, D.J. Rossi, R.M. Stone, D.J. Deangelo, M.G. Frattini, A. Letai, Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 151, 344–355 (2012). doi:10.1016/j.cell.2012.08.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. D.J. Goff, A. Court Recart, A. Sadarangani, H.J. Chun, C.L. Barrett, M. Krajewska, H. Leu, J. Low-Marchelli, W. Ma, A.Y. Shih, J. Wei, D. Zhai, I. Geron, M. Pu, L. Bao, R. Chuang, L. Balaian, J. Gotlib, M. Minden, G. Martinelli, J. Rusert, K.H. Dao, K. Shazand, P. Wentworth, K.M. Smith, C.A. Jamieson, S.R. Morris, K. Messer, L.S. Goldstein, T.J. Hudson, M. Marra, K.A. Frazer, M. Pellecchia, J.C. Reed, C.H. Jamieson, A pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell 12, 316–328 (2013). doi:10.1016/j.stem.2012.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A.S. Corbin, A. Agarwal, M. Loriaux, J. Cortes, M.W. Deininger, B.J. Druker, Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J. Clin. Invest. 121, 396–409 (2011). doi:10.1172/JCI35721

    Article  CAS  PubMed  Google Scholar 

  60. M. Konopleva, M. Milella, P. Ruvolo, J.C. Watts, M.R. Ricciardi, B. Korchin, T. McQueen, W. Bornmann, T. Tsao, P. Bergamo, D.H. Mak, W. Chen, J. McCubrey, A. Tafuri, M. Andreeff, MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 26, 778–787 (2012). doi:10.1038/leu.2011.287

    Article  CAS  PubMed  Google Scholar 

  61. M. Rahmani, M.M. Aust, E. Attkisson, D.C. Williams Jr., A. Ferreira-Gonzalez, S. Grant, Inhibition of Bcl-2 antiapoptotic members by obatoclax potently enhances sorafenib-induced apoptosis in human myeloid leukemia cells through a Bim-dependent process. Blood 119, 6089–6098 (2012). doi:10.1182/blood-2011-09-378141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. M. Skrtic, S. Sriskanthadevan, B. Jhas, M. Gebbia, X. Wang, Z. Wang, R. Hurren, Y. Jitkova, M. Gronda, N. Maclean, C.K. Lai, Y. Eberhard, J. Bartoszko, P. Spagnuolo, A.C. Rutledge, A. Datti, T. Ketela, J. Moffat, B.H. Robinson, J.H. Cameron, J. Wrana, C.J. Eaves, M.D. Minden, J.C. Wang, J.E. Dick, K. Humphries, C. Nislow, G. Giaever, A.D. Schimmer, Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20, 674–688 (2011). doi:10.1016/j.ccr.2011.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Y. Jitkova, M. Gronda, R. Hurren, X. Wang, C.A. Goard, B. Jhas, A.D. Schimmer, A novel formulation of tigecycline has enhanced stability and sustained antibacterial and antileukemic activity. PLoS One 9, e95281 (2014). doi:10.1371/journal.pone.0095281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. K. Goetze, C.G. Fabian, A. Siebers, L. Binz, D. Faber, S. Indraccolo, G. Nardo, U.G. Sattler, W. Mueller-Klieser, Manipulation of tumor metabolism for therapeutic approaches: ovarian cancer-derived cell lines as a model system. Cell. Oncol. (Dordr) 38, 377–385 (2015). doi:10.1007/s13402-015-0237-5

    Article  CAS  Google Scholar 

  65. Y.H. Wang, W.J. Israelsen, D. Lee, V.W. Yu, N.T. Jeanson, C.B. Clish, L.C. Cantley, M.G. Vander Heiden, D.T. Scadden, Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell 158, 1309–1323 (2014). doi:10.1016/j.cell.2014.07.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. D. Anastasiou, Y. Yu, W.J. Israelsen, J.K. Jiang, M.B. Boxer, B.S. Hong, W. Tempel, S. Dimov, M. Shen, A. Jha, H. Yang, K.R. Mattaini, C.M. Metallo, B.P. Fiske, K.D. Courtney, S. Malstrom, T.M. Khan, C. Kung, A.P. Skoumbourdis, H. Veith, N. Southall, M.J. Walsh, K.R. Brimacombe, W. Leister, S.Y. Lunt, Z.R. Johnson, K.E. Yen, K. Kunii, S.M. Davidson, H.R. Christofk, C.P. Austin, J. Inglese, M.H. Harris, J.M. Asara, G. Stephanopoulos, F.G. Salituro, S. Jin, L. Dang, D.S. Auld, H.W. Park, L.C. Cantley, C.J. Thomas, M.G. Vander Heiden, Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat. Chem. Biol. 8, 839–847 (2012). doi:10.1038/nchembio.1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. K.M. Parnell, J.M. Foulks, R.N. Nix, A. Clifford, J. Bullough, B. Luo, A. Senina, D. Vollmer, J. Liu, V. McCarthy, Y. Xu, M. Saunders, X.H. Liu, S. Pearce, K. Wright, M. O’Reilly, M.V. McCullar, K.K. Ho, S.B. Kanner, Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol. Cancer Ther. 12, 1453–1460 (2013). doi:10.1158/1535-7163.MCT-13-0026

    Article  CAS  PubMed  Google Scholar 

  68. T. Hitosugi, S. Kang, M.G. Vander Heiden, T.W. Chung, S. Elf, K. Lythgoe, S. Dong, S. Lonial, X. Wang, G.Z. Chen, J. Xie, T.L. Gu, R.D. Polakiewicz, J.L. Roesel, T.J. Boggon, F.R. Khuri, D.G. Gilliland, L.C. Cantley, J. Kaufman, J. Chen, Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73 (2009). doi:10.1126/scisignal.2000431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. E.M. Sturgill, M.L. Guzman, In Proceedings of the 105th Annual Meeting of the American Association for Cancer Research, (San Diego, CA) (2014)

  70. A. Ferraro, Altered primary chromatin structures and their implications in cancer development. Cell. Oncol. 39, 195–210 (2016). doi:10.1007/s13402-016-0276-6

    Article  Google Scholar 

  71. J. Yamazaki, M.R. Estecio, Y. Lu, H. Long, G.G. Malouf, D. Graber, Y. Huo, L. Ramagli, S. Liang, S.M. Kornblau, J. Jelinek, J.P. Issa, The epigenome of AML stem and progenitor cells. Epigenetics 8, 92–104 (2013). doi:10.4161/epi.23243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. E.D. Lagadinou, A. Sach, K. Callahan, R.M. Rossi, S.J. Neering, M. Minhajuddin, J.M. Ashton, S. Pei, V. Grose, K.M. O’Dwyer, J.L. Liesveld, P.S. Brookes, M.W. Becker, C.T. Jordan, BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329–341 (2013). doi:10.1016/j.stem.2012.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. C. Craddock, L. Quek, N. Goardon, S. Freeman, S. Siddique, M. Raghavan, A. Aztberger, A. Schuh, D. Grimwade, A. Ivey, P. Virgo, R. Hills, T. McSkeane, J. Arrazi, S. Knapper, C. Brookes, B. Davies, A. Price, K. Wall, M. Griffiths, J. Cavenagh, R. Majeti, I. Weissman, A. Burnett, P. Vyas, Azacitidine fails to eradicate leukemic stem/progenitor cell populations in patients with acute myeloid leukemia and myelodysplasia. Leukemia 27, 1028–1036 (2013). doi:10.1038/leu.2012.312

    Article  CAS  PubMed  Google Scholar 

  74. M.J. Chang, H. Wu, N.J. Achille, M.R. Reisenauer, C.W. Chou, N.J. Zeleznik-Le, C.S. Hemenway, W. Zhang, Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes. Cancer Res. 70, 10234–10242 (2010). doi:10.1158/0008-5472.CAN-10-3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. P. Jo, K. Jung, M. Grade, L.C. Conradi, H.A. Wolff, J. Kitz, H. Becker, J. Ruschoff, A. Hartmann, T. Beissbarth, A. Muller-Dornieden, M. Ghadimi, R. Schneider-Stock, J. Gaedcke, CpG island methylator phenotype infers a poor disease-free survival in locally advanced rectal cancer. Surgery 151, 564–570 (2012). doi:10.1016/j.surg.2011.08.013

    Article  PubMed  Google Scholar 

  76. K.M. Bernt, N. Zhu, A.U. Sinha, S. Vempati, J. Faber, A.V. Krivtsov, Z. Feng, N. Punt, A. Daigle, L. Bullinger, R.M. Pollock, V.M. Richon, A.L. Kung, S.A. Armstrong, MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell 20, 66–78 (2011). doi:10.1016/j.ccr.2011.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. T. Schenk, W.C. Chen, S. Gollner, L. Howell, L. Jin, K. Hebestreit, H.U. Klein, A.C. Popescu, A. Burnett, K. Mills, R.A. Casero Jr., L. Marton, P. Woster, M.D. Minden, M. Dugas, J.C. Wang, J.E. Dick, C. Muller-Tidow, K. Petrie, A. Zelent, Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat. Med. 18, 605–611 (2012). doi:10.1038/nm.2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. S.R. Daigle, E.J. Olhava, C.A. Therkelsen, C.R. Majer, C.J. Sneeringer, J. Song, L.D. Johnston, M.P. Scott, J.J. Smith, Y. Xiao, L. Jin, K.W. Kuntz, R. Chesworth, M.P. Moyer, K.M. Bernt, J.C. Tseng, A.L. Kung, S.A. Armstrong, R.A. Copeland, V.M. Richon, R.M. Pollock, Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011). doi:10.1016/j.ccr.2011.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. I. Maillard, J.L. Hess, The role of menin in hematopoiesis. Adv. Exp. Med. Biol. 668, 51–57 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. D.P. Mould, A.E. McGonagle, D.H. Wiseman, E.L. Williams, A.M. Jordan, Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date. Med. Res. Rev. 35, 586–618 (2014). doi:10.1002/med.21334

    Article  CAS  PubMed  Google Scholar 

  81. W. Fiskus, Y. Wang, A. Sreekumar, K.M. Buckley, H. Shi, A. Jillella, C. Ustun, R. Rao, P. Fernandez, J. Chen, R. Balusu, S. Koul, P. Atadja, V.E. Marquez, K.N. Bhalla, Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114, 2733–2743 (2009). doi:10.1182/blood-2009-03-213496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. J. Zhou, C. Bi, L.L. Cheong, S. Mahara, S.C. Liu, K.G. Tay, T.L. Koh, Q. Yu, W.J. Chng, The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML. Blood 118, 2830–2839 (2011). doi:10.1182/blood-2010-07-294827

    Article  PubMed  Google Scholar 

  83. A. Chaturvedi, M.M. Araujo Cruz, N. Jyotsana, A. Sharma, H. Yun, K. Gorlich, M. Wichmann, A. Schwarzer, M. Preller, F. Thol, J. Meyer, R. Haemmerle, E.A. Struys, E.E. Jansen, U. Modlich, Z. Li, L.M. Sly, R. Geffers, R. Lindner, D.J. Manstein, U. Lehmann, J. Krauter, A. Ganser, M. Heuser, Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 122, 2877–2887 (2013). doi:10.1182/blood-2013-03-491571

    Article  CAS  PubMed  Google Scholar 

  84. M.E. Figueroa, S. Lugthart, Y. Li, C. Erpelinck-Verschueren, X. Deng, P.J. Christos, E. Schifano, J. Booth, W. van Putten, L. Skrabanek, F. Campagne, M. Mazumdar, J.M. Greally, P.J. Valk, B. Lowenberg, R. Delwel, A. Melnick, DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17, 13–27 (2010). doi:10.1016/j.ccr.2009.11.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. O. Abdel-Wahab, R.L. Levine, Metabolism and the leukemic stem cell. J. Exp. Med. 207, 677–680 (2010). doi:10.1084/jem.20100523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. C. Frelin, V. Imbert, E. Griessinger, A.C. Peyron, N. Rochet, P. Philip, C. Dageville, A. Sirvent, M. Hummelsberger, E. Berard, M. Dreano, N. Sirvent, J.F. Peyron, Targeting NF-kappaB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood 105, 804–811 (2005). doi:10.1182/blood-2004-04-1463

    Article  CAS  PubMed  Google Scholar 

  87. K. Vazquez-Santillan, J. Melendez-Zajgla, L. Jimenez-Hernandez, G. Martinez-Ruiz, V. Maldonado, NF-kappaB signaling in cancer stem cells: a promising therapeutic target? Cell. Oncol. 38, 327–339 (2015). doi:10.1007/s13402-015-0236-6

    Article  CAS  Google Scholar 

  88. M.L. Guzman, S.J. Neering, D. Upchurch, B. Grimes, D.S. Howard, D.A. Rizzieri, S.M. Luger, C.T. Jordan, Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98, 2301–2307 (2001)

    Article  CAS  PubMed  Google Scholar 

  89. Y. Kagoya, A. Yoshimi, K. Kataoka, M. Nakagawa, K. Kumano, S. Arai, H. Kobayashi, T. Saito, Y. Iwakura, M. Kurokawa, Positive feedback between NF-kappaB and TNF-alpha promotes leukemia-initiating cell capacity. J. Clin. Invest. 124, 528–542 (2014). doi:10.1172/JCI68101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. M.L. Guzman, R.M. Rossi, L. Karnischky, X. Li, D.R. Peterson, D.S. Howard, C.T. Jordan, The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105, 4163–4169 (2005). doi:10.1182/blood-2004-10-4135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. P. Diamanti, C.V. Cox, J.P. Moppett, A. Blair, Parthenolide eliminates leukemia-initiating cell populations and improves survival in xenografts of childhood acute lymphoblastic leukemia. Blood 121, 1384–1393 (2013). doi:10.1182/blood-2012-08-448852

    Article  CAS  PubMed  Google Scholar 

  92. M.L. Guzman, R.M. Rossi, S. Neelakantan, X. Li, C.A. Corbett, D.C. Hassane, M.W. Becker, J.M. Bennett, E. Sullivan, J.L. Lachowicz, A. Vaughan, C.J. Sweeney, W. Matthews, M. Carroll, J.L. Liesveld, P.A. Crooks, C.T. Jordan, An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110, 4427–4435 (2007). doi:10.1182/blood-2007-05-090621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. D.C. Hassane, M.L. Guzman, C. Corbett, X. Li, R. Abboud, F. Young, J.L. Liesveld, M. Carroll, C.T. Jordan, Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood 111, 5654–5662 (2008). doi:10.1182/blood-2007-11-126003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. M.L. Guzman, N. Yang, K.K. Sharma, M. Balys, C.A. Corbett, C.T. Jordan, M.W. Becker, U. Steidl, O. Abdel-Wahab, R.L. Levine, G. Marcucci, G.J. Roboz, D.C. Hassane, Selective activity of the histone deacetylase inhibitor AR-42 against leukemia stem cells: a novel potential strategy in acute myelogenous leukemia. Mol. Cancer Ther. 13, 1979–1990 (2014). doi:10.1158/1535-7163.MCT-13-0963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. N. Lounnas, C. Frelin, N. Gonthier, P. Colosetti, A. Sirvent, J.P. Cassuto, F. Berthier, N. Sirvent, P. Rousselot, M. Dreano, J.F. Peyron, V. Imbert, NF-kappaB inhibition triggers death of imatinib-sensitive and imatinib-resistant chronic myeloid leukemia cells including T315I Bcr-Abl mutants. Int. J. Cancer 125, 308–317 (2009). doi:10.1002/ijc.24294

    Article  CAS  PubMed  Google Scholar 

  96. S.K. Tasian, D.T. Teachey, S.R. Rheingold, Targeting the PI3K/mTOR Pathway in Pediatric Hematologic Malignancies. Front. Oncol. 4, 108 (2014). doi:10.3389/fonc.2014.00108

    PubMed  PubMed Central  Google Scholar 

  97. T. Skorski, P. Kanakaraj, M. Nieborowska-Skorska, M.Z. Ratajczak, S.C. Wen, G. Zon, A.M. Gewirtz, B. Perussia, B. Calabretta, Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86, 726–736 (1995)

    CAS  PubMed  Google Scholar 

  98. C. Billottet, V.L. Grandage, R.E. Gale, A. Quattropani, C. Rommel, B. Vanhaesebroeck, A. Khwaja, A selective inhibitor of the p110delta isoform of PI 3-kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene 25, 6648–6659 (2006). doi:10.1038/sj.onc.1209670

    Article  CAS  PubMed  Google Scholar 

  99. A.M. Martelli, C. Evangelisti, F. Chiarini, J.A. McCubrey, The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget 1, 89–103 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  100. P.L. Tazzari, A. Cappellini, F. Ricci, C. Evangelisti, V. Papa, T. Grafone, G. Martinelli, R. Conte, L. Cocco, J.A. McCubrey, A.M. Martelli, Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 21, 427–438 (2007). doi:10.1038/sj.leu.2404523

    Article  CAS  PubMed  Google Scholar 

  101. E. Pastwa, T. Poplawski, U. Lewandowska, S.B. Somiari, J. Blasiak, R.I. Somiari, Wortmannin potentiates the combined effect of etoposide and cisplatin in human glioma cells. Int. J. Biochem. Cell Biol. 53, 423–431 (2014). doi:10.1016/j.biocel.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  102. V. Papa, P.L. Tazzari, F. Chiarini, A. Cappellini, F. Ricci, A.M. Billi, C. Evangelisti, E. Ottaviani, G. Martinelli, N. Testoni, J.A. McCubrey, A.M. Martelli, Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor perifosine in acute myelogenous leukemia cells. Leukemia 22, 147–160 (2008). doi:10.1038/sj.leu.2404980

    Article  CAS  PubMed  Google Scholar 

  103. Y. Tong, Y.Y. Liu, L.S. You, W.B. Qian, Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro. Acta Pharmacol. Sin. 33, 542–550 (2012). doi:10.1038/aps.2011.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. C. Recher, O. Beyne-Rauzy, C. Demur, G. Chicanne, C. Dos Santos, V.M. Mas, D. Benzaquen, G. Laurent, F. Huguet, B. Payrastre, Antileukemic activity of rapamycin in acute myeloid leukemia. Blood 105, 2527–2534 (2005). doi:10.1182/blood-2004-06-2494

    Article  CAS  PubMed  Google Scholar 

  105. Q. Xu, J.E. Thompson, M. Carroll, mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 106, 4261–4268 (2005). doi:10.1182/blood-2004-11-4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. F. Chiarini, A. Lonetti, G. Teti, E. Orsini, D. Bressanin, A. Cappellini, F. Ricci, P.L. Tazzari, A. Ognibene, M. Falconi, P. Pagliaro, I. Iacobucci, G. Martinelli, S. Amadori, J.A. McCubrey, A.M. Martelli, A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia. Oncotarget 3, 1615–1628 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  107. D.C. Hassane, S. Sen, M. Minhajuddin, R.M. Rossi, C.A. Corbett, M. Balys, L. Wei, P.A. Crooks, M.L. Guzman, C.T. Jordan, Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood 116, 5983–5990 (2010). doi:10.1182/blood-2010-04-278044

    Article  CAS  PubMed  Google Scholar 

  108. K. Meja, C. Stengel, R. Sellar, D. Huszar, B.R. Davies, R.E. Gale, D.C. Linch, A. Khwaja, PIM and AKT kinase inhibitors show synergistic cytotoxicity in acute myeloid leukaemia that is associated with convergence on mTOR and MCL1 pathways. Br. J. Haematol. 167, 69–79 (2014). doi:10.1111/bjh.13013

    Article  CAS  PubMed  Google Scholar 

  109. F. Pellicano, M.T. Scott, G.V. Helgason, L.E. Hopcroft, E.K. Allan, M. Aspinall-O’Dea, M. Copland, A. Pierce, B.J. Huntly, A.D. Whetton, T.L. Holyoake, The antiproliferative activity of kinase inhibitors in chronic myeloid leukemia cells is mediated by FOXO transcription factors. Stem Cells 32, 2324–2337 (2014). doi:10.1002/stem.1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. N. Chapuis, J. Tamburini, A.S. Green, C. Vignon, V. Bardet, A. Neyret, M. Pannetier, L. Willems, S. Park, A. Macone, S.M. Maira, N. Ifrah, F. Dreyfus, O. Herault, C. Lacombe, P. Mayeux, D. Bouscary, Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin. Cancer Res. 16, 5424–5435 (2010). doi:10.1158/1078-0432.CCR-10-1102

    Article  CAS  PubMed  Google Scholar 

  111. X. Ding, F. Li, J. McKnight, C. Schmidt, K. Strooisma, H. Shimizu, K. Faber, J.A. Ware, B. Dean, A supported liquid extraction-LC-MS/MS method for determination of GDC-0980 (Apitolisib), a dual small-molecule inhibitor of class 1A phosphoinositide 3-kinase and mammalian target of rapamycin, in human plasma. J. Pharm. Biomed. Anal. 100, 150–156 (2014). doi:10.1016/j.jpba.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  112. P. Yu, A.D. Laird, X. Du, J. Wu, K.A. Won, K. Yamaguchi, P.P. Hsu, F. Qian, C.T. Jaeger, W. Zhang, C.A. Buhr, P. Shen, W. Abulafia, J. Chen, J. Young, A. Plonowski, F.M. Yakes, F. Chu, M. Lee, F. Bentzien, S.T. Lam, S. Dale, D.J. Matthews, P. Lamb, P. Foster, Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol. Cancer Ther. 13, 1078–1091 (2014). doi:10.1158/1535-7163.MCT-13-0709

    Article  CAS  PubMed  Google Scholar 

  113. Z. Tothova, D.G. Gilliland, FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1, 140–152 (2007). doi:10.1016/j.stem.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  114. K. Ito, A. Hirao, F. Arai, K. Takubo, S. Matsuoka, K. Miyamoto, M. Ohmura, K. Naka, K. Hosokawa, Y. Ikeda, T. Suda, Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat. Med. 12, 446–451 (2006). doi:10.1038/nm1388

    Article  CAS  PubMed  Google Scholar 

  115. F. Zhou, Q. Shen, F.X. Claret, Novel roles of reactive oxygen species in the pathogenesis of acute myeloid leukemia. J. Leukoc. Biol. 94, 423–429 (2013). doi:10.1189/jlb.0113006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. M. Nieborowska-Skorska, P.K. Kopinski, R. Ray, G. Hoser, D. Ngaba, S. Flis, K. Cramer, M.M. Reddy, M. Koptyra, T. Penserga, E. Glodkowska-Mrowka, E. Bolton, T.L. Holyoake, C.J. Eaves, S. Cerny-Reiterer, P. Valent, A. Hochhaus, T.P. Hughes, H. van der Kuip, M. Sattler, W. Wiktor-Jedrzejczak, C. Richardson, A. Dorrance, T. Stoklosa, D.A. Williams, T. Skorski, Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119, 4253–4263 (2012). doi:10.1182/blood-2011-10-385658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. S. Pei, M. Minhajuddin, K.P. Callahan, M. Balys, J.M. Ashton, S.J. Neering, E.D. Lagadinou, C. Corbett, H. Ye, J.L. Liesveld, K.M. O’Dwyer, Z. Li, L. Shi, P. Greninger, J. Settleman, C. Benes, F.K. Hagen, J. Munger, P.A. Crooks, M.W. Becker, C.T. Jordan, Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J. Biol. Chem. 288, 33542–33558 (2013). doi:10.1074/jbc.M113.511170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. X. Chen, X. Shi, C. Zhao, X. Li, X. Lan, S. Liu, H. Huang, N. Liu, S. Liao, D. Zang, W. Song, Q. Liu, B.Z. Carter, Q.P. Dou, X. Wang, J. Liu, Anti-rheumatic agent auranofin induced apoptosis in chronic myeloid leukemia cells resistant to imatinib through both Bcr/Abl-dependent and -independent mechanisms. Oncotarget 5, 9118–9132 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  119. Y. Du, Y. Xia, X. Pan, Z. Chen, A. Wang, K. Wang, J. Li, J. Zhang, Fenretinide targets chronic myeloid leukemia stem/progenitor cells by regulation of redox signaling. Antioxid. Redox Signal. 20, 1866–1880 (2014). doi:10.1089/ars.2012.4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. K. Moulick, J.H. Ahn, H. Zong, A. Rodina, L. Cerchietti, E.M. Gomes DaGama, E. Caldas-Lopes, K. Beebe, F. Perna, K. Hatzi, L.P. Vu, X. Zhao, D. Zatorska, T. Taldone, P. Smith-Jones, M. Alpaugh, S.S. Gross, N. Pillarsetty, T. Ku, J.S. Lewis, S.M. Larson, R. Levine, H. Erdjument-Bromage, M.L. Guzman, S.D. Nimer, A. Melnick, L. Neckers, G. Chiosis, Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat. Chem. Biol. 7, 818–826 (2011). doi:10.1038/nchembio.670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. P. Flandrin, D. Guyotat, A. Duval, J. Cornillon, E. Tavernier, N. Nadal, L. Campos, Significance of heat-shock protein (HSP) 90 expression in acute myeloid leukemia cells. Cell Stress Chaperones 13, 357–364 (2008). doi:10.1007/s12192-008-0035-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. H. Reikvam, K.J. Hatfield, E. Ersvaer, R. Hovland, J. Skavland, B.T. Gjertsen, K. Petersen, O. Bruserud, Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status--consequences and potentials for pharmacological intervention. Br. J. Haematol. 156, 468–480 (2012). doi:10.1111/j.1365-2141.2011.08960.x

    Article  CAS  PubMed  Google Scholar 

  123. M. Zackova, D. Mouckova, T. Lopotova, Z. Ondrackova, H. Klamova, J. Moravcova, Hsp90 - a potential prognostic marker in CML. Blood Cells Mol. Dis. 50, 184–189 (2013). doi:10.1016/j.bcmd.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  124. W. Yu, Q. Rao, M. Wang, Z. Tian, D. Lin, X. Liu, J. Wang, The Hsp90 inhibitor 17-allylamide-17-demethoxygeldanamycin induces apoptosis and differentiation of Kasumi-1 harboring the Asn822Lys KIT mutation and down-regulates KIT protein level. Leuk. Res. 30, 575–582 (2006). doi:10.1016/j.leukres.2005.08.028

  125. J.E. Lancet, I. Gojo, M. Burton, M. Quinn, S.M. Tighe, K. Kersey, Z. Zhong, M.X. Albitar, K. Bhalla, A.L. Hannah, M.R. Baer, Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 24, 699–705 (2010). doi:10.1038/leu.2009.292

    Article  CAS  PubMed  Google Scholar 

  126. C. Gallerne, A. Prola, C. Lemaire, Hsp90 inhibition by PU-H71 induces apoptosis through endoplasmic reticulum stress and mitochondrial pathway in cancer cells and overcomes the resistance conferred by Bcl-2. Biochim. Biophys. Acta 1833, 1356–1366 (2013). doi:10.1016/j.bbamcr.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  127. S.R. Ambati, E.C. Lopes, K. Kosugi, U. Mony, A. Zehir, S.K. Shah, T. Taldone, A.L. Moreira, P.A. Meyers, G. Chiosis, M.A. Moore, Pre-clinical efficacy of PU-H71, a novel HSP90 inhibitor, alone and in combination with bortezomib in Ewing sarcoma. Mol. Oncol. 8, 323–336 (2014). doi:10.1016/j.molonc.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  128. H. Zong, A. Gozman, E. Caldas-Lopes, T. Taldone, E. Sturgill, S. Brennan, S.O. Ochiana, E.M. Gomes-DaGama, S. Sen, A. Rodina, J. Koren 3rd, M.W. Becker, C.M. Rudin, A. Melnick, R.L. Levine, G.J. Roboz, S.D. Nimer, G. Chiosis, M.L. Guzman, A hyperactive signalosome in acute myeloid leukemia drives addiction to a tumor-specific Hsp90 species. Cell Rep. 13, 2159–2173 (2015). doi:10.1016/j.celrep.2015.10.073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. C. Hurtz, K. Hatzi, L. Cerchietti, M. Braig, E. Park, Y.M. Kim, S. Herzog, P. Ramezani-Rad, H. Jumaa, M.C. Muller, W.K. Hofmann, A. Hochhaus, B.H. Ye, A. Agarwal, B.J. Druker, N.P. Shah, A.M. Melnick, M. Muschen, BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J. Exp. Med. 208, 2163–2174 (2011). doi:10.1084/jem.20110304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. J.M. Polo, T. Dell’Oso, S.M. Ranuncolo, L. Cerchietti, D. Beck, G.F. Da Silva, G.G. Prive, J.D. Licht, A. Melnick, Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat. Med. 10, 1329–1335 (2004). doi:10.1038/nm1134

    Article  CAS  PubMed  Google Scholar 

  131. C. Duy, J.J. Yu, R. Nahar, S. Swaminathan, S.M. Kweon, J.M. Polo, E. Valls, L. Klemm, S. Shojaee, L. Cerchietti, W. Schuh, H.M. Jack, C. Hurtz, P. Ramezani-Rad, S. Herzog, H. Jumaa, H.P. Koeffler, I.M. de Alboran, A.M. Melnick, B.H. Ye, M. Muschen, BCL6 is critical for the development of a diverse primary B cell repertoire. J. Exp. Med. 207, 1209–1221 (2010). doi:10.1084/jem.20091299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. B. Sumithra, U. Saxena, A.B. Das, Alternative splicing within the Wnt signaling pathway: role in cancer development. Cell. Oncol. (Dordr) 39, 1–13 (2016). doi:10.1007/s13402-015-0266-0

    Article  CAS  Google Scholar 

  133. A.E. Abrahamsson, I. Geron, J. Gotlib, K.H. Dao, C.F. Barroga, I.G. Newton, F.J. Giles, J. Durocher, R.S. Creusot, M. Karimi, C. Jones, J.L. Zehnder, A. Keating, R.S. Negrin, I.L. Weissman, C.H. Jamieson, Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc. Natl. Acad. Sci. U. S. A. 106, 3925–3929 (2009). doi:10.1073/pnas.0900189106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. N.M. Ghahhari, S. Babashah, Interplay between microRNAs and WNT/beta-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur. J. Cancer 51, 1638–1649 (2015). doi:10.1016/j.ejca.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  135. J.P. Radich, H. Dai, M. Mao, V. Oehler, J. Schelter, B. Druker, C. Sawyers, N. Shah, W. Stock, C.L. Willman, S. Friend, P.S. Linsley, Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl. Acad. Sci. U. S. A. 103, 2794–2799 (2006). doi:10.1073/pnas.0510423103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. A.M. Coluccia, A. Vacca, M. Dunach, L. Mologni, S. Redaelli, V.H. Bustos, D. Benati, L.A. Pinna, C. Gambacorti-Passerini, Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J. 26, 1456–1466 (2007). doi:10.1038/sj.emboj.7601485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. L. Wang, L.S. You, W.M. Ni, Q.L. Ma, Y. Tong, L.P. Mao, J.J. Qian, J. Jin, beta-Catenin and AKT are promising targets for combination therapy in acute myeloid leukemia. Leuk. Res. 37, 1329–1340 (2013). doi:10.1016/j.leukres.2013.06.023

    Article  CAS  PubMed  Google Scholar 

  138. A. Hamad, Z. Sahli, M. El Sabban, M. Mouteirik, R. Nasr, Emerging therapeutic strategies for targeting chronic myeloid leukemia stem cells. Stem Cells Int. 2013, 724360 (2013). doi:10.1155/2013/724360

    Article  PubMed  PubMed Central  Google Scholar 

  139. J. Yeung, M.T. Esposito, A. Gandillet, B.B. Zeisig, E. Griessinger, D. Bonnet, C.W. So, beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 18, 606–618 (2010). doi:10.1016/j.ccr.2010.10.032

    Article  CAS  PubMed  Google Scholar 

  140. S. Song, T. Christova, S. Perusini, S. Alizadeh, R.Y. Bao, B.W. Miller, R. Hurren, Y. Jitkova, M. Gronda, M. Isaac, B. Joseph, R. Subramaniam, A. Aman, A. Chau, D.E. Hogge, S.J. Weir, J. Kasper, A.D. Schimmer, R. Al-awar, J.L. Wrana, L. Attisano, Wnt inhibitor screen reveals iron dependence of beta-catenin signaling in cancers. Cancer Res. 71, 7628–7639 (2011). doi:10.1158/0008-5472.CAN-11-2745

    Article  CAS  PubMed  Google Scholar 

  141. A. Gandillet, S. Park, F. Lassailly, E. Griessinger, J. Vargaftig, A. Filby, T.A. Lister, D. Bonnet, Heterogeneous sensitivity of human acute myeloid leukemia to beta-catenin down-modulation. Leukemia 25, 770–780 (2011). doi:10.1038/leu.2011.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. E.C. Hales, J.W. Taub, L.H. Matherly, New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of gamma-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell. Signal. 26, 149–161 (2014). doi:10.1016/j.cellsig.2013.09.021

    Article  CAS  PubMed  Google Scholar 

  143. F. Damm, B. Markus, F. Thol, M. Morgan, G. Gohring, B. Schlegelberger, J. Krauter, M. Heuser, O.A. Bernard, A. Ganser, TET2 mutations in cytogenetically normal acute myeloid leukemia: clinical implications and evolutionary patterns. Genes Chromosomes Cancer 53, 824–832 (2014). doi:10.1002/gcc.22191

    Article  CAS  PubMed  Google Scholar 

  144. C. Lobry, P. Ntziachristos, D. Ndiaye-Lobry, P. Oh, L. Cimmino, N. Zhu, E. Araldi, W. Hu, J. Freund, O. Abdel-Wahab, S. Ibrahim, D. Skokos, S.A. Armstrong, R.L. Levine, C.Y. Park, I. Aifantis, Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J. Exp. Med. 210, 301–319 (2013). doi:10.1084/jem.20121484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. C. Dierks, R. Beigi, G.R. Guo, K. Zirlik, M.R. Stegert, P. Manley, C. Trussell, A. Schmitt-Graeff, K. Landwerlin, H. Veelken, M. Warmuth, Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14, 238–249 (2008). doi:10.1016/j.ccr.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  146. M.Y. Konopleva, C.T. Jordan, Leukemia stem cells and microenvironment: biology and therapeutic targeting. J. Clin. Oncol. 29, 591–599 (2011). doi:10.1200/JCO.2010.31.0904

    Article  PubMed  PubMed Central  Google Scholar 

  147. L. Jin, Y. Tabe, S. Konoplev, Y. Xu, C.E. Leysath, H. Lu, S. Kimura, A. Ohsaka, M.B. Rios, L. Calvert, H. Kantarjian, M. Andreeff, M. Konopleva, CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol. Cancer Ther. 7, 48–58 (2008). doi:10.1158/1535-7163.MCT-07-0042

    Article  CAS  PubMed  Google Scholar 

  148. L. Brault, A. Rovo, S. Decker, C. Dierks, A. Tzankov, J. Schwaller, CXCR4-SERINE339 regulates cellular adhesion, retention and mobilization, and is a marker for poor prognosis in acute myeloid leukemia. Leukemia 28, 566–576 (2014). doi:10.1038/leu.2013.201

    Article  CAS  PubMed  Google Scholar 

  149. E. Weisberg, A.K. Azab, P.W. Manley, A.L. Kung, A.L. Christie, R. Bronson, I.M. Ghobrial, J.D. Griffin, Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 26, 985–990 (2012). doi:10.1038/leu.2011.360

    Article  CAS  PubMed  Google Scholar 

  150. S. Tavor, I. Petit, S. Porozov, A. Avigdor, A. Dar, L. Leider-Trejo, N. Shemtov, V. Deutsch, E. Naparstek, A. Nagler, T. Lapidot, CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64, 2817–2824 (2004)

    Article  CAS  PubMed  Google Scholar 

  151. Y. Wang, Y. Liu, S.N. Malek, P. Zheng, Y. Liu, Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 8, 399–411 (2011). doi:10.1016/j.stem.2011.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. M. Shahjahani, J. Mohammadiasl, F. Noroozi, M. Seghatoleslami, S. Shahrabi, F. Saba, N. Saki, Molecular basis of chronic lymphocytic leukemia diagnosis and prognosis. Cell. Oncol. 38, 93–109 (2015). doi:10.1007/s13402-014-0215-3

    Article  CAS  Google Scholar 

  153. A. Chávez-González, S. Avilés-Vázquez, D. Moreno-Lorenzana, H. Mayani, in Stem cell biology in normal life and diseases, ed. by K. Alimoghaddam (InTech, 2013)

  154. J.M. Goldman, How I treat chronic myeloid leukemia in the imatinib era. Blood 110, 2828–2837 (2007). doi:10.1182/blood-2007-04-038943

    Article  CAS  PubMed  Google Scholar 

  155. R. Bhatia, M. Holtz, N. Niu, R. Gray, D.S. Snyder, C.L. Sawyers, D.A. Arber, M.L. Slovak, S.J. Forman, Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101, 4701–4707 (2003). doi:10.1182/blood-2002-09-2780

    Article  CAS  PubMed  Google Scholar 

  156. M. Copland, A. Hamilton, L.J. Elrick, J.W. Baird, E.K. Allan, N. Jordanides, M. Barow, J.C. Mountford, T.L. Holyoake, Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood 107, 4532–4539 (2006). doi:10.1182/blood-2005-07-2947

    Article  CAS  PubMed  Google Scholar 

  157. H.G. Jorgensen, E.K. Allan, N.E. Jordanides, J.C. Mountford, T.L. Holyoake, Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109, 4016–4019 (2007). doi:10.1182/blood-2006-11-057521

    Article  CAS  PubMed  Google Scholar 

  158. A. Hamilton, G.V. Helgason, M. Schemionek, B. Zhang, S. Myssina, E.K. Allan, F.E. Nicolini, C. Muller-Tidow, R. Bhatia, V.G. Brunton, S. Koschmieder, T.L. Holyoake, Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood 119, 1501–1510 (2012). doi:10.1182/blood-2010-12-326843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. J. Bertacchini, N. Ketabchi, L. Mediani, S. Capitani, S. Marmiroli, N. Saki, Inhibition of Ras-mediated signaling pathways in CML stem cells. Cell. Oncol. 38, 407–418 (2015). doi:10.1007/s13402-015-0248-2

    Article  CAS  Google Scholar 

  160. J.H. Black, J.A. McCubrey, M.C. Willingham, J. Ramage, D.E. Hogge, A.E. Frankel, Diphtheria toxin-interleukin-3 fusion protein (DT(388)IL3) prolongs disease-free survival of leukemic immunocompromised mice. Leukemia 17, 155–159 (2003). doi:10.1038/sj.leu.2402744

    Article  CAS  PubMed  Google Scholar 

  161. T. Cierpicki, J. Grembecka, Challenges and opportunities in targeting the menin-MLL interaction. Future Med. Chem. 6, 447–462 (2014). doi:10.4155/fmc.13.214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all our colleagues for the insights that we have attempted to summarize. We apologize to the colleagues whose work could not be cited, owing to space limitations. SB is funded by the Iranian Council for Stem Cell Research and Technology Development (11/77230) and Tarbiat Modares University, Tehran, Iran. MLG is funded by the Irma T. Hirschl/Monique Weill-Caulier Trust, the US National Institutes of Health (NIH) (R01 CA172546; 5R01CA102031), and the Leukemia and Lymphoma Foundation. ACG is funded by the Instituto de Bebidas para la Salud y el Bienestar, México and the Fundación IMSS, México.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Monica L. Guzman or Sadegh Babashah.

Ethics declarations

Conflict of interest

None declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(PPTX 55 kb)

Supplementary Fig. 2

(PPTX 286 kb)

Supplementary Fig. 3

(PPTX 342 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavez-Gonzalez, A., Bakhshinejad, B., Pakravan, K. et al. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol. 40, 1–20 (2017). https://doi.org/10.1007/s13402-016-0297-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0297-1

Keywords

Navigation