Skip to main content

Advertisement

Log in

NFκB activation demarcates a subset of hepatocellular carcinoma patients for targeted therapy

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third leading cause of cancer death worldwide. It is a heterogeneous disorder and >80 % of the tumors develop in patients with liver cirrhosis, resulting from chronic inflammation and/or fibrosis. Here, we set out to identify novel targets for HCC therapy and to define a subgroup of patients that might benefit most from it.

Methods

Cellular pathway activation profiling of 45 transcription factors in a HCC-derived cell line (HEP3B), in vitro analysis of NFκB reporter activity in additional HCC-derived cell lines and pathway-focused integrative analyses of publicly available primary HCC-derived expression profiling data (GSE6764, GSE9843, E-TABM-36 and E-TABM-292) were employed to reveal a role of NFκB in HCC development. In order to identify potential targeting agents, a luciferase-based NFκB reporter screening assay was established in HEP3B cells. After screening of a drug library through this assay, a potent NFκB pathway inhibitor was identified and characterized using an array of additional in vitro assays.

Results

Using cellular pathway activation profiling, we found a high activation of NFκB-mediated signaling in HCC-derived cell lines and in primary HCC tumors. Through NFκB inhibitor screening we observed a highly efficacious NFκB pathway inhibitory potential of ornithogalum in HCC-derived HEP3B cells. Although its active component still remains to be defined, ornithogalum has been found to inhibit endoplasmic reticulum (ER) and oxidative stress responses. ER stress, oxidative stress and NFκB signaling were found to be enhanced in a subset of HCCs, as well as in (precancerous) liver cirrhosis tissues.

Conclusion

From our data we conclude that NFκB signaling is activated in precancerous cirrhosis tissues and in a subset of HCCs. We found that ornithogalum exhibits NFκB targeting and stress relieving activities. NFκB inhibitors, including the active component of ornithogalum, may serve as putative preventive and targeted therapeutic agents for at least a subset of HCCs in which the NFκB pathway is activated. These latter notions require further investigation in a translational context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Ferlay, H. R. Shin, F. Bray, D. Forman, C. Mathers, D. M. Parkin, Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127, 2893–2917 (2010)

    Article  CAS  PubMed  Google Scholar 

  2. L. Zender, M. S. Spector, W. Xue, P. Flemming, C. Cordon-Cardo, J. Silke, S. T. Fan, J. M. Luk, M. Wigler, G. J. Hannon, D. Mu, R. Lucito, S. Powers, S. W. Lowe, Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. N. Nishida, A. Goel, Genetic and epigenetic signatures in human hepatocellular carcinoma: a systematic review. Curr Genomics 12, 130–137 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. R. Saeki, H. Nagai, S. Kaneko, M. Unoura, N. Yamanaka, E. Okamoto, K. Kobayashi, K. Matsubara, Intratumoral genomic heterogeneity in human hepatocellular carcinoma detected by restriction landmark genomic scanning. J. Hepatol. 33, 99–105 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. L. A. D'Alessandro, R. Meyer, U. Klingmüller, Hepatocellular carcinoma: a systems biology perspective. Front. Physiol. 4, 28 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  6. S. Fatima, N. P. Lee, J. M. Luk, Dickkopfs and Wnt/β-catenin signalling in liver cancer. World. J. Clin. Oncol. 2, 311–325 (2011)

    Google Scholar 

  7. J. M. Llovet, J. Bruix, Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48, 1312–1327 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Totoki, K. Tatsuno, S. Yamamoto, Y. Arai, F. Hosoda, S. Ishikawa, S. Tsutsumi, K. Sonoda, H. Totsuka, T. Shirakihara, H. Sakamoto, L. Wang, H. Ojimo, K. Shimada, T. Kosuge, T. Okusaka, K. Kato, J. Kusuda, T. Yoshida, H. Aburatani, T. Shibata, High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 43, 464–469 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. S. I. Grivennikov, M. Karin, Inflammatory cytokines in cancer: tumour necrosis factor and interleukin 6 take the stage. Ann. Rheum. Dis. 70, i104–i108 (2011)

    Article  CAS  PubMed  Google Scholar 

  10. G. Fattovich, T. Stroffolini, I. Zagni, F. Donato, Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127, S35–S50 (2004)

    Article  PubMed  Google Scholar 

  11. M. Karin, A. Lin, NF-kappaB at the crossroads of life and death. Nat. Immunol. 3, 221–227 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. K. Vazquez-Santillan, J. Melendez-Zajgla, L. Jimenez-Hernandez, G. Martinez-Ruiz, V. Maldonado, NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell. Oncol. 38, 327–339 (2015)

    Article  CAS  Google Scholar 

  13. B. B. Aggarwal, A. Bhardwaj, R. S. Aggarwal, N. P. Seeram, S. Shishodia, Y. Takada, Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 24, 2783–2840 (2004)

    CAS  PubMed  Google Scholar 

  14. N. Chainani-Wu, Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa. J. Altern. Complement. Med. 9, 161–168 (2003)

    Article  PubMed  Google Scholar 

  15. L. Fredriksson, B. Herpers, G. Benedetti, Q. Matadin, J. C. Puigvert, H. de Bont, S. Dragovic, N. P. Vermeulen, J. N. Commandeur, E. Danen, M. de Graauw, B. van de Water, Diclofenac inhibits tumor necrosis factor-α-induced nuclear factor-κB activation causing synergistic hepatocyte apoptosis. Hepatology 53, 2027–2041 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. S. C. Miller, R. Huang, S. Sakamuru, S. J. Shukla, M. S. Attene-Ramos, P. Shinn, D. Van Leer, W. Leister, C. P. Austin, M. Xia, Identification of known drugs that act as inhibitors of NF-kappaB signaling and their mechanism of action. Biochem. Pharmacol. 79, 1272–1280 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Shishodia, D. Koul, B. B. Aggarwal, Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates TNF-induced NF-kappa B activation through inhibition of activation of I kappa B alpha kinase and Akt in human non-small cell lung carcinoma: correlation with suppression of COX-2 synthesis. J. Immunol. 173, 2011–2022 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. X. Yao, J. Huang, H. Zhong, N. Shen, R. Faggioni, M. Fung, Y. Yao, Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther. 141, 125–139 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. S. W. Tas, M. J. Vervoordeldonk, P. P. Tak, Gene therapy targeting nuclear factor-κB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 9, 160–170 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. R. Nevins, Pathway-based classification of lung cancer: a strategy to guide therapeutic selection. Proc. Am. Thorac. Soc. 8, 180–182 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  21. P. N. Verma, I. Vaid, Encyclopaedia of Homeopathic Pharmacopoeia, Vol. IB (Jain Publishers, New Delhi, India, 2002), p. 1864

    Google Scholar 

  22. B. W. Dyer, F. A. Ferrer, D. K. Klinedinst, R. Rodriguez, A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal. Biochem. 282, 158–161 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63 (1983)

    Article  CAS  PubMed  Google Scholar 

  24. A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102, 15545–15550 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, J. Lerner, J. P. Brunet, A. Subramanian, K. N. Ross, M. Reich, H. Hieronymus, G. Wei, S. A. Armstrong, S. J. Haggarty, P. A. Clemons, R. Wei, S. A. Carr, E. S. Lander, T. R. Golub, The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. C. Li, W. H. Wong, Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl. Acad. Sci. U. S. A. 98, 31–36 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. J. Boelens, S. Lust, F. Offner, M. E. Bracke, B. W. Vanhoecke, The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 21, 215–226 (2007)

    CAS  PubMed  Google Scholar 

  28. A. Shibata, T. Nagaya, T. Imai, H. Funahashi, A. Nakao, H. Seo, Inhibition of NF-κB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells. Breast Cancer Res. Treat. 73, 237–243 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. D. Hanahan, R. A. Weinberg, The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. A. Geurts van Kessel, The cancer genome: from structure to function. Cell. Oncol. 37, 155–165 (2014)

    Article  Google Scholar 

  31. F. Colotta, P. Allavena, A. Sica, C. Garlanda, A. Mantovani, Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. S. Lüth, J. Schrader, S. Zander, A. Carambia, J. Buchkremer, S. Huber, K. Reifenberg, K. Yamamura, P. Schirmacher, A. W. Lohse, J. Herkel, Chronic inflammatory IFN-γ signaling suppresses hepatocarcinogenesis in mice by sensitizing hepatocytes for apoptosis. Cancer Res. 71, 3763–3771 (2011)

    Article  PubMed  Google Scholar 

  33. J. F. Rossi, S. Negrier, N. D. James, I. Kocak, R. Hawkins, H. Davis, U. Prabhakar, X. Qin, P. Mulders, B. Berns, A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br. J. Cancer 103, 1154–1162 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. F. Wang, P. Arun, J. Friedman, Z. Chen, C. Van Waes, Current and potential inflammation targeted therapies in head and neck cancer. Curr. Opin. Pharmacol. 9, 389–395 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. Maeda, H. Kamata, J. L. Luo, H. Leffert, M. Karin, IKKβ couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977–990 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. P. J. Wysocki, Targeted therapy of hepatocellular cancer. Expert Opin Investig Drugs 19, 265–274 (2010)

    Article  CAS  PubMed  Google Scholar 

  37. W. Yeo, T. S. Mok, B. Zee, T. W. Leung, P. B. Lai, W. Y. Lau, J. Koh, F. K. Mo, S. C. Yu, A. T. Chan, P. Hui, B. Ma, K. C. Lam, W. M. Ho, H. T. Wong, A. Tang, P. J. Johnson, A randomized phase III study of doxorubicin versus cisplatin/interferon α-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J. Natl. Cancer Inst. 97, 1532–1538 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. A. R. Baudy, N. Saxena, H. Gordish, E. P. Hoffman, K. Nagaraju, A robust in vitro screening assay to identify NF-κB inhibitors for inflammatory muscle diseases. Int. Immunopharmacol. 9, 1209–1214 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Y. Zhou, C. Garcia-Prieto, D. A. Carney, R. H. Xu, H. Pelicano, Y. Kang, W. Yu, C. Lou, S. Kondo, J. Liu, D. M. Harris, Z. Estrov, M. J. Keating, Z. Jin, P. Huang, OSW-1: a natural compound with potent anticancer activity and a novel mechanism of action. J. Natl. Cancer Inst. 97, 1781–1785 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. V. Yadav, S. Sultana, J. Yadav, N. Saini, Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS One 7, e47796 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. Lavelle, J. DeSimone, M. Hankewych, T. Kousnetzova, Y. H. Chen, Decitabine induces cell cycle arrest at the G1 phase via p21(WAF1) and the G2/M phase via the p38 MAP kinase pathway. Leuk. Res. 27, 999–1007 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. T. Fujimoto, M. Onda, H. Nagai, T. Nagahata, K. Ogawa, M. Emi, Upregulation and overexpression of human X-box binding protein 1 (hXBP-1) gene in primary breast cancers. Breast Cancer 10, 301–306 (2003)

    Article  PubMed  Google Scholar 

  43. C. Jamora, G. Dennert, A. S. Lee, Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc. Natl. Acad. Sci. U. S. A. 93, 7690–7694 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M. Shuda, N. Kondoh, N. Imazeki, K. Tanaka, T. Okada, K. Mori, A. Hada, M. Arai, T. Wakatsuki, O. Matsubara, N. Yamamoto, M. Yamamoto, Activation of the ATF6, XBP1 and grp78 genes in human hepatocellular carcinoma: a possible involvement of the ER stress pathway in hepatocarcinogenesis. J. Hepatol. 38, 605–614 (2003)

    Article  CAS  PubMed  Google Scholar 

  45. G. S. Hotamisligil, Endoplasmic reticulum stress and the inflammatory basis of me4tabolic disease. Cell 140, 900–917 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. C. Garcia-Prieto, K. B. R. Ahmed, Z. Chen, Y. Zhou, N. Hammoudi, Y. Kang, C. Lou, Y. Mei, Z. Jin, P. Huang, Effective killing of leukemia cells by the natural product OSW-1 through disruption of cellular calcium homeostasis. J. Biol. Chem. 288, 3240–3250 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. J. Jin, X. Jin, C. Qian, Y. Ruan, H. Jiang, Signaling network of OSW-1-induced apoptosis and necroptosis in hepatocellular carcinoma. Mol. Med. Rep. 7, 1646–1650 (2013)

  48. Y. Inami, S. Waguri, A. Sakamoto, T. Kouno, K. Nakada, O. Hino, S. Watanabe, J. Ando, M. Iwadate, M. Yamamoto, M. S. Lee, K. Tanaka, M. Komatsu, Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 193, 275–284 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. J. M. Luk, C. T. Lam, A. F. Siu, B. Y. Lam, I. O. Ng, M. Y. Hu, C. M. Che, S. T. Fan, Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6, 1049–1057 (2006)

    Article  CAS  PubMed  Google Scholar 

  50. S. Derks, B. Diosdado, Personalized cancer medicine: next steps in the genomic era. Cell. Oncol. 38, 1–2 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Atomic Energy, Government of India, through research grant No. 6/6/2008/R&D-II-230R and the Department of Biotechnology, Government of India through research grant BT/PR4500/PID/6/676/2012 to Dr. Kumaresan Ganesan, Madurai Kamaraj University. We acknowledge the award of CSIR-NET fellowship to Vignesh Ramesh. Instrumentation support of the UGC-CEGS, UGC-CAS, DBT-IPLS, DST-PURSE and UGC-NRCBS program and the central facilities of the School of Biological Sciences, Madurai Kamaraj University, are also acknowledged. The authors thank Dr. Piyush Trivedi for providing the drug screening library and Mrs. Jaishree, Publication Division, IIT-Madras, for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumaresan Ganesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Electronic supplementary material

Fig. S1

(PDF 60 kb)

Fig. S2

(PDF 68 kb)

Fig. S3

(PDF 46 kb)

Fig. S4

(PDF 52 kb)

Fig. S5

(PDF 82 kb)

Fig. S6

(PDF 39 kb)

Fig. S7

(PDF 41 kb)

Table S1

(PDF 58 kb)

Table S2

(PDF 78 kb)

Table S3

(PDF 96 kb)

Table S4

(PDF 47 kb)

Table S5

(PDF 46 kb)

Table S6

(PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, V., Selvarasu, K., Pandian, J. et al. NFκB activation demarcates a subset of hepatocellular carcinoma patients for targeted therapy. Cell Oncol. 39, 523–536 (2016). https://doi.org/10.1007/s13402-016-0294-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-016-0294-4

Keywords

Navigation