Skip to main content
Log in

HepG2 cells acquire stem cell-like characteristics after immune cell stimulation

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

The presence of cancer stem cells (CSCs) is currently regarded as one of the main culprits of tumor formation and therapy failure. It is known that chronic inflammation is associated with CSCs, but it is not clear yet how inflammation affects the development of CSCs. In the present study we aimed to examine the relationship between cancer cell stimulation mediated by immune cells and the acquisition of a CSC-like phenotype.

Methods

Cancer cells derived from single hepatocarcinoma HepG2 cells were treated with mouse splenic B cells (MSBCs) and mouse peritoneal macrophage cells (MPMCs), respectively. The stem cell-like characteristics of the resulting HepG2 cells (MSBC-HepG2 and MPMC-HepG2) were evaluated using different assays, including biomarker assays, in vitro tumoroid and colony forming assays, in vivo tumor forming assays and signal transduction pathway activation assays.

Results

Various stemness characteristics of HepG2 cells, including self-renewal, proliferation, chemoresistance and tumorigenicity were evaluated. The expression levels of stemness-related genes and its encoded proteins in the MSBC-HepG2 and MPMC-HepG2 cells were assessed using RT-PCR and FACS analyses. We found that MSBC-HepG2 and MPMC-HepG2 cells possess hepatic CSC properties, including persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and over-expression of CSC-related genes and proteins (i.e., EpCAM, ALDH, CD133 and CD44), compared to the parental cells. We also found that 1x103 MSBC-HepG2 and MPMC-HepG2 cells were able to form tumors in NOD/SCID mice and that the Notch and SHH signaling pathways were highly activated in MSBC-HepG2 cells.

Conclusions

We conclude that the immune system may have a double-edge effect on cancer development. On one hand, immune cells such as B lymphocytes and macrophages may recognize, attack and eliminate cancer cells, whereas on the other hand, they may promote a subset of cancer cells to acquire stem cell-like characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Geissler, M. Hambek, M. Leinung, M. Diensthuber, D. Gassner, T. Stover, J. Wagenblast, The challenge of tumor heterogeneity--different phenotypes of cancer stem cells in a head and neck squamous cell carcinoma xenograft mouse model. In Vivo 26, 593–598 (2012)

    CAS  PubMed  Google Scholar 

  2. L.L. Marotta, K. Polyak, Cancer stem cells: a model in the making. Curr. Opin. Genet. Dev. 19, 44–50 (2009)

    Article  PubMed  Google Scholar 

  3. L.H. Broersen, G.W. van Pelt, R.A. Tollenaar, W.E. Mesker, Clinical application of circulating tumor cells in breast cancer. Cell. Oncol. 37, 9–15 (2014)

    Article  CAS  Google Scholar 

  4. J. Di, T. Duiveman-de Boer, P.L. Zusterzeel, C.G. Figdor, L.F. Massuger, R. Torensma, The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell. Oncol. 36, 363–374 (2013)

    Article  CAS  Google Scholar 

  5. A. Koren, H. Motaln, T. Cufer, Lung cancer stem cells: a biological and clinical perspective. Cell. Oncol. 36, 265–275 (2013)

    Article  CAS  Google Scholar 

  6. A. Azvolinsky, Companies hope for rare win with cancer stem cell therapies. Nat. Med. 18, 474 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. S. Bhattacharyya, K.L. Khanduja, New hope in the horizon: cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 42, 237–242 (2010)

    Article  CAS  Google Scholar 

  8. A. Krishnan, K. Reckamp, L. Leong, City of hope cancer center hematology-oncology fellowship and hematopoietic stem cell transplantation fellowship. Am. J. Hematol. 86, 197–198 (2011)

    Article  PubMed  Google Scholar 

  9. D.Q. Liu, X.T. Pei, Hope to the cancer therapy: cancer stem cell. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 27, 659–661 (2005)

    PubMed  Google Scholar 

  10. A.K. Saxena, D. Singh, J. Gupta, Role of stem cell research in therapeutic purpose--a hope for new horizon in medical biotechnology. J. Exp. Ther. Oncol. 8, 223–233 (2010)

    PubMed  Google Scholar 

  11. R.C. Zhao, Y.S. Zhu, Y. Shi, New hope for cancer treatment: exploring the distinction between normal adult stem cells and cancer stem cells. Pharmacol. Ther. 119, 74–82 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. P.B. Gupta, C.L. Chaffer, R.A. Weinberg, Cancer stem cells: mirage or reality? Nat. Med. 15, 1010–1012 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. D. Bonnet, J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997)

    Article  CAS  PubMed  Google Scholar 

  14. H.C. Hasselbalch, Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk. Res. 37, 214–220 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. S. Moossavi, H. Zhang, J. Sun, N. Rezaei, Host-microbiota interaction and intestinal stem cells in chronic inflammation and colorectal cancer. Expert. Rev. Clin. Immunol. 9, 409–422 (2013)

    Article  CAS  PubMed  Google Scholar 

  16. F. Karimi-Busheri, V. Zadorozhny, D.L. Shawler, H. Fakhrai, The stability of breast cancer progenitor cells during cryopreservation: maintenance of proliferation, self-renewal, and senescence characteristics. Cryobiology 60, 308–314 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. S. Varghese, R. Whipple, S.S. Martin, H.R. Alexander, Multipotent cancer stem cells derived from human malignant peritoneal mesothelioma promote tumorigenesis. PLoS One 7, e52825 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. T. Balog, A. Saric, S. Sobocanec, B. Kusic, T. Marotti, Endomorphin-suppressed nitric oxide release from mice peritoneal macrophages. Neuropeptides 44, 25–29 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Chang, Y. Zhao, H. Zhan, X. Wei, T. Liu, B. Zheng, Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells. Tumour Biol. 35, 1075–1082 (2013)

    Article  PubMed  Google Scholar 

  20. O. Felthaus, T. Ettl, M. Gosau, O. Driemel, G. Brockhoff, A. Reck, K. Zeitler, M. Hautmann, T.E. Reichert, G. Schmalz, C. Morsczeck, Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines. Biochem. Biophys. Res. Commun. 407, 28–33 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. M. Hensel, A. Schneeweiss, H.P. Sinn, G. Egerer, M. Kornacker, E. Solomayer, R. Haas, G. Bastert, A.D. Ho, Stem cell dose and tumorbiologic parameters as prognostic markers for patients with metastatic breast cancer undergoing high-dose chemotherapy with autologous blood stem cell support. Stem Cells 20, 32–40 (2002)

    Article  PubMed  Google Scholar 

  22. E.D. Hsi, S.H. Jung, R. Lai, J.L. Johnson, J.R. Cook, D. Jones, S. Devos, B.D. Cheson, L.E. Damon, J. Said, Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a cancer and leukemia group B 59909 correlative science study. Leuk. Lymphoma 49, 2081–2090 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. H. Ohata, T. Ishiguro, Y. Aihara, A. Sato, H. Sakai, S. Sekine, H. Taniguchi, T. Akasu, S. Fujita, H. Nakagama, K. Okamoto, Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer Res. 72, 5101–5110 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. D. Ponti, A. Costa, N. Zaffaroni, G. Pratesi, G. Petrangolini, D. Coradini, S. Pilotti, M.A. Pierotti, M.G. Daidone, Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005)

    Article  CAS  PubMed  Google Scholar 

  25. M. Salerno, S. Avnet, G. Bonuccelli, A. Eramo, R. De Maria, M. Gambarotti, G. Gamberi, N. Baldini, Sphere-forming cell subsets with cancer stem cell properties in human musculoskeletal sarcomas. Int. J. Oncol. 43, 95–102 (2013)

    PubMed  Google Scholar 

  26. M.F. Shi, J. Jiao, W.G. Lu, F. Ye, D. Ma, Q.G. Dong, X. Xie, Identification of cancer stem cell-like cells from human epithelial ovarian carcinoma cell line. Cell. Mol. Life Sci. 67, 3915–3925 (2010)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Chen, D. Yu, H. Zhang, H. He, C. Zhang, W. Zhao, R.G. Shao, CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int. J. Biol. Sci. 8, 992–1004 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. V.S. Donnenberg, A.D. Donnenberg, Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J. Clin. Pharmacol. 45, 872–877 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. F. Jin, H.S. Li, L. Zhao, Y.J. Wei, H. Zhang, Y.J. Guo, R. Pang, X.B. Jiang, H.Y. Zhao, Expression of anti-apoptotic and multi-drug resistance-associated protein genes in cancer stem cell isolated from TJ905 glioblastoma multiforme cell line. Zhonghua Yi Xue Za Zhi 88, 2312–2316 (2008)

    CAS  PubMed  Google Scholar 

  30. H. Yi, H.J. Cho, S.M. Cho, K. Jo, J.A. Park, S.H. Lee, B.J. Chang, J.S. Kim, H.C. Shin, Effect of 5-FU and MTX on the expression of drug-resistance related cancer stem cell markers in non-small cell lung cancer cells. Korean J Physiol Pharmacol 16, 11–16 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. E.H. Huang, M.J. Hynes, T. Zhang, C. Ginestier, G. Dontu, H. Appelman, J.Z. Fields, M.S. Wicha, B.M. Boman, Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69, 3382–3389 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. M.H. Wright, A.M. Calcagno, C.D. Salcido, M.D. Carlson, S.V. Ambudkar, L. Varticovski, Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 10, R10 (2008)

    Article  PubMed Central  PubMed  Google Scholar 

  33. M.R. Garcia Campelo, G. Alonso Curbera, G. Aparicio Gallego, E. Grande Pulido, L.M. Anton Aparicio, Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway. Clin. Transl. Oncol. 13, 77–83 (2011)

    Article  PubMed  Google Scholar 

  34. K.A. Hassan, L. Wang, H. Korkaya, G. Chen, I. Maillard, D.G. Beer, G.P. Kalemkerian, M.S. Wicha, Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin. Cancer Res. 19, 1972–1980 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. J. Fu, M. Rodova, S.K. Roy, J. Sharma, K.P. Singh, R.K. Srivastava, S. Shankar, GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett. 330, 22–32 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. S.N. Tang, J. Fu, D. Nall, M. Rodova, S. Shankar, R.K. Srivastava, Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int. J. Cancer 131, 30–40 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. A.R. Altaba, P. Sanchez, N. Dahmane, Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat. Rev. Cancer 2, 361–372 (2002)

    Article  Google Scholar 

  38. L.L. Liu, D. Fu, Y. Ma, X.Z. Shen, The power and the promise of liver cancer stem cell markers. Stem Cells Dev. 20, 2023–2030 (2011)

    Article  CAS  PubMed  Google Scholar 

  39. A. Mantovani, A. Sica, Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010)

    Article  CAS  PubMed  Google Scholar 

  40. M. de Magalhaes-Silverman, L. Hammert, B. Lembersky, J. Lister, W. Rybka, E. Ball, High-dose chemotherapy and autologous stem cell support followed by post-transplant doxorubicin and taxol as initial therapy for metastatic breast cancer: hematopoietic tolerance and efficacy. Bone Marrow Transplant. 21, 1207–1211 (1998)

    Article  Google Scholar 

  41. C.A. Foss, J.J. Fox, G. Feldmann, A. Maitra, C. Iacobuzio-Donohue, S.E. Kern, R. Hruban, M.G. Pomper, Radiolabeled anti-claudin 4 and anti-prostate stem cell antigen: initial imaging in experimental models of pancreatic cancer. Mol. Imaging 6, 131–139 (2007)

    PubMed  Google Scholar 

  42. B. Hennessy, J.A. McCaffrey, P. Daly, P. Browne, M.J. Kennedy, High dose chemotherapy and stem cell support for poor risk and recurrent nonseminomatous germ cell cancer: initial experience with sequential therapy. Ir. J. Med. Sci. 171, 158–160 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. J.M. Sun, C. Zhang, X.N. Li, Initial screening of binding-peptide of the cell surface marker CD133 of cancer stem cells. Beijing Da Xue Xue Bao 40, 476–479 (2008)

    CAS  PubMed  Google Scholar 

  44. J.Y. Wong, G. Somlo, T. Odom-Maryon, L.E. Williams, A. Liu, D. Yamauchi, A.M. Wu, P. Yazaki, S. Wilczynski, J.E. Shively, S. Forman, J.H. Doroshow, A.A. Raubitschek, Initial clinical experience evaluating Yttrium-90-chimeric T84.66 anticarcinoembryonic antigen antibody and autologous hematopoietic stem cell support in patients with carcinoembryonic antigen-producing metastatic breast cancer. Clin. Cancer Res. 5, 3224s–3231s (1999)

    CAS  PubMed  Google Scholar 

  45. C. Moncharmont, A. Levy, M. Gilormini, G. Bertrand, C. Chargari, G. Alphonse, D. Ardail, C. Rodriguez-Lafrasse, N. Magne, Targeting a cornerstone of radiation resistance: cancer stem cell. Cancer Lett. 322, 139–147 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. S. Ma, K.W. Chan, T.K. Lee, K.H. Tang, J.Y. Wo, B.J. Zheng, X.Y. Guan, Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol. Cancer Res. 6, 1146–1153 (2008)

    Article  CAS  PubMed  Google Scholar 

  47. Y. Liu, Z.P. Han, S.S. Zhang, Y.Y. Jing, X.X. Bu, C.Y. Wang, K. Sun, G.C. Jiang, X. Zhao, R. Li, L. Gao, Q.D. Zhao, M.C. Wu, L.X. Wei, Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J. Biol. Chem. 286, 25007–25015 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. S.H. Lee, H.S. Hong, Z.X. Liu, R.H. Kim, M.K. Kang, N.H. Park, K.H. Shin, TNFalpha enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem. Biophys. Res. Commun. 424, 58–64 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. T.S. Zhu, M.A. Costello, C.E. Talsma, C.G. Flack, J.G. Crowley, L.L. Hamm, X. He, S.L. Hervey-Jumper, J.A. Heth, K.M. Muraszko, F. DiMeco, A.L. Vescovi, X. Fan, Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 71, 6061–6072 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fujian Minfaigaoji foundation (NO. 2014–514), the Fujian Education Office (NO. JA12033) and the Fuzhou University (NO.2013-XQ-27), Fujian province, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Meng.

Ethics declarations

Competing interests

The authors have declared that no competing interests exist.

Additional information

Hang Wang and Miqing Yang are Joint first authors

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 29 kb)

Figure S1

(DOCX 87 kb)

Figure S2

(DOC 34926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, M., Lin, L. et al. HepG2 cells acquire stem cell-like characteristics after immune cell stimulation. Cell Oncol. 39, 35–45 (2016). https://doi.org/10.1007/s13402-015-0249-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-015-0249-1

Keywords

Navigation