Skip to main content

Advertisement

Log in

Metformin and epithelial ovarian cancer therapeutics

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Ovarian cancer is one of the most common lethal gynecological malignancies world-wide. Despite an initial 70–80 % response rate, most patients relapse within 1–2 years and develop chemo-resistance. Hence, the identification of novel drugs or the repositioning of known drugs to re-sensitize ovarian cancer cells to existing chemotherapy regimens is needed. Here, we evaluated the effect of metformin (an anti-diabetic drug) on ovarian cancer cells, based on its putative effect on other solid tumors.

Methods

Primary cultures of epithelial ovarian cancer cells established from ascitic fluids of untreated ovarian cancer patients and the SKOV-3 ovarian cancer-derived cell line were used. The respective cells were treated with metformin, carboplatin and paclitaxel alone and its various combinations and their effects, including the ability to induce apoptosis, were examined. Concomitantly, the cells were assessed for the expression of several apoptosis-related mRNAs and proteins using quantitative real time PCR, flowcytometry and Western blotting.

Results

We found that metformin induced apoptosis in the ovarian cancer cells tested, and provoked a cell cycle arrest in the G0/G1 and S-phase. Metformin induced apoptosis by down-regulating Bcl-2 and Bcl-xL expression, and up-regulating Bax and Cytochrome c expression. We also found that the apoptosis induction by metformin could be enhanced by a combinatorial use of carboplatin and/or paclitaxel.

Conclusions

Our data indicate that metformin can induce apoptosis in both primary ovarian cancer cells and in SKOV-3 cells. When metformin was combined with carboplatin or paclitaxel, an increased apoptotic activity was observed, implicating a chemo-adjuvant potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.R. Chien, G. Aletti, D.A. Bell, G.L. Keeney, V. Shridhar, L.C. Hartmann, Molecular pathogenesis and therapeutic targets in epithelial ovarian cancer. J. Cell. Biochem. 102, 1117–1129 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Y. Li, K. Wang, Y.-Z. Jiang, X.-W. Chang, C.-F. Dai, J. Zheng, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits human ovarian cancer cell proliferation. Cell. Oncol. 37, 429–437 (2014)

    Article  CAS  Google Scholar 

  3. M. Momeni, T. Kalir, S. Farag, L. Chuang, D. Fishman, D.E. Burstein, Expression of H1.5 and PLZF in granulosa cell tumors and normal ovarian tissues: a short report. Cell. Oncol. 37, 229–234 (2014)

    Article  CAS  Google Scholar 

  4. J. Di, T. Duiveman-de Boer, P.L.M. Zusterzeel, C.G. Figdor, L.F.A.G. Massuger, R. Torensma, The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell. Oncol. 36, 363–374 (2013)

    Article  CAS  Google Scholar 

  5. I.N. Alimova, B. Liu, Z. Fan, S.M. Edgerton, T. Dillon, S.E. Lind, A.D. Thor, Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8, 909–915 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. M. Zakikhani, R. Dowling, I.G. Fantus, N. Sonenberg, M. Pollak, Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, D.E. Moller, Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. S.L. Bowker, S.R. Majumdar, P. Veugelers, J.A. Johnson, Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29, 254–258 (2006)

    Article  PubMed  Google Scholar 

  9. G.W.D. Landman, N. Kleefstra, K.J.J. van Hateren, K.H. Groenier, R.O.B. Gans, H.J.G. Bilo, Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33, 322–326 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. G. Libby, L.A. Donnelly, P.T. Donnan, D.R. Alessi, A.D. Morris, J.M.M. Evans, New users of metformin are at low risk of incident cancer A cohort study among people with type 2 diabetes. Diabetes Care 32, 1620–1625 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. S. Jiralerspong, S.L. Palla, S.H. Giordano, F. Meric-Bernstam, C. Liedtke, C.M. Barnett, L. Hsu, M.-C. Hung, G.N. Hortobagyi, A.M. Gonzalez-Angulo, Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 27, 3297–3302 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. A. DeCensi, M. Puntoni, P. Goodwin, M. Cazzaniga, A. Gennari, B. Bonanni, S. Gandini, Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev. Res. 3, 1451–1461 (2010)

    Article  CAS  Google Scholar 

  13. W.H. Gotlieb, J. Saumet, M.-C. Beauchamp, J. Gu, S. Lau, M.N. Pollak, I. Bruchim, In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol. Oncol. 110, 246–250 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. R. Rattan, S. Giri, L.C. Hartmann, V. Shridhar, Metformin attenuates ovarian cancer cell growth in an AMP-kinase dispensable manner. J. Cell. Mol. Med. 15, 166–178 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. R. Rattan, R.P. Graham, J.L. Maguire, S. Giri, V. Shridhar, Metformin suppresses ovarian cancer growth and metastasis with enhancement of cisplatin cytotoxicity in vivo. Neoplasia 13, 483–491 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. C.J. Bailey, R.C. Turner, Metformin. N. Engl. J. Med. 334, 574–579 (1996)

    Article  CAS  PubMed  Google Scholar 

  17. K. Mohankumar, S. Pajaniradje, S. Sridharan, V.K. Singh, L. Ronsard, A.C. Banerjea, B.C. Selvanesan, M.S. Coumar, L. Periyasamy, R. Rajagopalan, Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cell. Oncol. 37, 439–454 (2014)

    Article  CAS  Google Scholar 

  18. V.V. Dhawan, G.V. Joshi, A.S. Jain, Y.P. Nikam, R.P. Gude, R. Mulherkar, M.S. Nagarsenker, Apoptosis induction and anti-cancer activity of LeciPlex formulations. Cell. Oncol. 37, 339–351 (2014)

    Article  CAS  Google Scholar 

  19. T. Nakaoka, A. Ota, T. Ono, S. Karnan, H. Konishi, A. Furuhashi, Y. Ohmura, Y. Yamada, Y. Hosokawa, Y. Kazaoka, Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell. Oncol. 37, 119–129 (2014)

    Article  CAS  Google Scholar 

  20. O.N. Ikediobi, H. Davies, G. Bignell, S. Edkins, C. Stevens, S. O’Meara, T. Santarius, T. Avis, S. Barthorpe, L. Brackenbury, G. Buck, A. Butler, J. Clements, J. Cole, E. Dicks, S. Forbes, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton, C. Hunter, A. Jenkinson, D. Jones, V. Kosmidou, R. Lugg, A. Menzies, T. Mironenko, A. Parker, J. Perry, K. Raine, D. Richardson, R. Shepherd, A. Small, R. Smith, H. Solomon, P. Stephens, J. Teague, C. Tofts, J. Varian, T. Webb, S. West, S. Widaa, A. Yates, W. Reinhold, J.N. Weinstein, M.R. Stratton, P.A. Futreal, R. Wooster, Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol. Cancer Ther. 5, 2606–2612 (2006)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. L.D. Dunfield, T.G. Shepherd, M.W. Nachtigal, Primary culture and mRNA analysis of human ovarian cells. Biol. Proced. Online. 4, 55–61 (2002)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. E.L. Tobinick, The value of drug repositioning in the current pharmaceutical market. Drug News Perspect. 22, 119–125 (2009)

    Article  PubMed  Google Scholar 

  23. C. Campas, Drug repositioning summit: finding new routes to success. Drug News Perspect. 22, 126–128 (2009)

    Article  PubMed  Google Scholar 

  24. I. Ben Sahra, K. Laurent, A. Loubat, S. Giorgetti-Peraldi, P. Colosetti, P. Auberger, J.F. Tanti, Y. Le Marchand-Brustel, F. Bost, The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27, 3576–3586 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. M. Buzzai, R.G. Jones, R.K. Amaravadi, J.J. Lum, R.J. DeBerardinis, F. Zhao, B. Viollet, C.B. Thompson, Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007)

    Article  CAS  PubMed  Google Scholar 

  26. K. Kisfalvi, G. Eibl, J. Sinnett-Smith, E. Rozengurt, Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res. 69, 6539–6545 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. A. Isakovic, L. Harhaji, D. Stevanovic, Z. Markovic, M. Sumarac-Dumanovic, V. Starcevic, D. Micic, V. Trajkovic, Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cell. Mol. Life Sci. 64, 1290–1302 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. Z. Yuan, K. Cao, C. Lin, L. Li, H.-y. Liu, X.-y. Zhao, L. Liu, H.-x. Deng, J. Li, C.-I. Nie, Y.-Q. Wei, The p53 upregulated modulator of apoptosis (PUMA) chemosensitizes intrinsically resistant ovarian cancer cells to cisplatin by lowering the threshold set by Bcl-x(L) and Mcl-1. Mol. Med. 17, 1262–1274 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Y. Zhuang, W.K. Miskimins, Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J. Mol. Signal. 3, 18 (2008)

    Article  PubMed Central  PubMed  Google Scholar 

  30. H. Takane, E. Shikata, K. Otsubo, S. Higuchi, I. Ieiri, Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics 9, 415–422 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. L.-W. Wang, Z.-S. Li, D.-W. Zou, Z.-D. Jin, J. Gao, G.-M. Xu, Metformin induces apoptosis of pancreatic cancer cells. World J. Gastroenterol. 14, 7192–7198 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. B. Martin-Castillo, A. Vazquez-Martin, C. Oliveras-Ferraros, J.A. Menendez, Metformin and cancer: doses, mechanisms and the dandelion and hormetic phenomena. Cell Cycle 9, 1057–1064 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. M.R. Owen, E. Doran, A.P. Halestrap, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all patients and IRCH without whose co-operation this study would have been impossible.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeta Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Kumar, L. & Singh, N. Metformin and epithelial ovarian cancer therapeutics. Cell Oncol. 38, 365–375 (2015). https://doi.org/10.1007/s13402-015-0235-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-015-0235-7

Keywords

Navigation