Skip to main content

Advertisement

Log in

Germline oncopharmacogenetics, a promising field in cancer therapy

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Pharmacogenetics (PGx) is the study of the relationship between inter-individual genetic variation and drug responses. Germline variants of genes involved in drug metabolism, drug transport, and drug targets can affect individual response to medications. Cancer therapies are characterized by an intrinsically high toxicity; therefore, the application of pharmacogenetics to cancer patients is a particularly promising method for avoiding the use of inefficacious drugs and preventing the associated adverse effects. However, despite continuing efforts in this field, very few labels include information about germline genetic variants associated with drug responses. DPYD, TPMT, UGT1A1, G6PD, CYP2D6, and HLA are the sole loci for which the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) report specific information. This review highlights the germline PGx variants that have been approved to date for anticancer treatments, and also provides some insights about other germline variants with potential clinical applications. The continuous and rapid evolution of next-generation sequencing applications, together with the development of computational methods, should help to refine the implementation of personalized medicine. One day, clinicians may be able to prescribe the best treatment and the correct drug dosage based on each patient’s genotype. This approach would improve treatment efficacy, reduce toxicity, and predict non-responders, thereby decreasing chemotherapy-associated morbidity and improving health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. National Center for Biotechnology Information (NCBI), database of single nucleotide polymorphisms (SNPs) and multiple small-scale variations that include insertions/deletions, microsatellites, and non-polymorphic variants, http://www.ncbi.nlm.nih.gov/snp. Accessed 1 Jul 2014

  2. J.S. Kang, M.H. Lee, Overview of therapeutic drug monitoring. Korean J. Intern. Med. 24, 1–10 (2009)

    PubMed Central  PubMed  Google Scholar 

  3. R.S. Huang, M.J. Ratain, Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J. Clin. 59, 42–55 (2009)

    PubMed Central  PubMed  Google Scholar 

  4. J.W. Watters, A. Kraja, M.A. Meucci, M.A. Province, H.L. McLeod, Genome-wide discovery of loci influencing chemotherapy cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 101, 11809–11814 (2004)

    PubMed Central  CAS  PubMed  Google Scholar 

  5. US Food and Drug Administration. Drug Information, http://www.accessdata.fda.gov. Accessed 30 Nov 2014

  6. European Medicine Agency (EMA). European Public Assessment Reports (EPARs), http://ema.europa.eu. Accessed 30 Nov 2014

  7. M. Miozzo, V. Vaira, S.M. Sirchia, Epigenetic alterations in cancer and personalized cancer tratment. Futur. Oncol. (2014) Accepted for publication

  8. National Institute of Genetic Medical Sciences. http://www.nigms.nih.gov. Accessed 5 Jul 2014

  9. K.E. Caudle, T.E. Klein, J.M. Hoffman, D.J. Muller, M. Whirl-Carrillo, L. Gong, E.M. McDonagh, K. Sangkuhl, C.F. Thorn, M. Schwab, J.A. Agundez, R.R. Freimuth, V. Huser, M.T. Lee, O.F. Iwuchukwu, K.R. Crews, S.A. Scott, M. Wadelius, J.J. Swen, R.F. Tyndale, C.M. Stein, D. Roden, M.V. Relling, M.S. Williams, S.G. Johnson, Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr. Drug Metab. 15, 209–217 (2014)

    PubMed Central  CAS  PubMed  Google Scholar 

  10. J.J. Swen, M. Nijenhuis, A. de Boer, L. Grandia, A.H. Maitland-van der Zee, H. Mulder, G.A. Rongen, R.H. van Schaik, T. Schalekamp, D.J. Touw, J. van der Weide, B. Wilffert, V.H. Deneer, H.-J. Guchelaar, Pharmacogenetics: from bench to byte–an update of guidelines. Clin. Pharmacol. Ther. 89, 662–673 (2011)

    CAS  PubMed  Google Scholar 

  11. G.D. Heggie, J.P. Sommadossi, D.S. Cross, W.J. Huster, R.B. Diasio, Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile of 5-fluorouracil and its metabolites in plasma. Cancer Res. 47, 2203–2206 (1987)

    CAS  PubMed  Google Scholar 

  12. G. Zaza, M. Cheok, N. Krynetskaia, C. Thorn, G. Stocco, J.M. Hebert, H. McLeod, R.M. Weinshilboum, M.V. Relling, W.E. Evans, T.E. Klein, R.B. Altman, Thiopurine pathway. Pharmacogenet. Genomics 20, 573–574 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  13. J.F. Gagné, V. Montminy, P. Belanger, K. Journault, G. Gaucher, C. Guillemette, Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol. Pharmacol. 62, 608–617 (2002)

    PubMed  Google Scholar 

  14. D.J. Schaid, C.F. Spraggs, S.K. McDonnell, L.R. Parham, C.J. Cox, B. Ejlertsen, D.M. Finkelstein, E. Rappold, J. Curran, L.R. Cardon, P.E. Goss, Prospective validation of HLA-DRB1*07:01 allele carriage as a predictive risk factor for lapatinib-induced liver injury. J. Clin. Oncol. 32, 2296–2303 (2014)

    CAS  PubMed  Google Scholar 

  15. D.L. Veenstra, M. Piper, J.E. Haddow, S.G. Pauker, R. Klein, C.S. Richards, S.R. Tunis, B. Djulbegovic, M. Marrone, J.S. Lin, A.O. Berg, N. Calonge, Improving the efficiency and relevance of evidence-based recommendations in the era of whole-genome sequencing: an EGAPP methods update. Genet. Med. 15, 14–24 (2013)

    PubMed Central  PubMed  Google Scholar 

  16. N.K. Gillis, J.N. Patel, F. Innocenti, Clinical implementation of germ line cancer pharmacogenetic variants during the next-generation sequencing era. Clin. Pharmacol. Ther. 95, 269–280 (2014)

    PubMed Central  CAS  PubMed  Google Scholar 

  17. J.L. Yen, H.L. McLeod, Should DPD analysis be required prior to prescribing fluoropyrimidines? Eur. J. Cancer 43, 1011–1026 (2007)

    PubMed  Google Scholar 

  18. S.M. Offer, N.J. Wegner, C.C. Fossum, K. Wang, R.B. Diasio, Phenotypic profiling of DPYD variations relevant to 5-fluoroacil sensitivity using real-time cellular analysis and in vitro measurement of enzyme activity. Cancer Res. 73, 1958–1968 (2014)

    Google Scholar 

  19. A. Lima, R. Azevedo, H. Sousa, V. Seabra, R. Medeiros, Current approaches for TYMS polymorphisms and their importance in molecular epidemiology and pharmacogenetics. Pharmacogenomics J. 14, 1337–1351 (2013)

    CAS  Google Scholar 

  20. R. Di Francia, M. Berretta, O. Catapano, L.M.T. Canzoniero, L. Formisano, Molecular diagnostics for pharmacogenomic testing of fluoropyrimidine based-therapy: costs, methods and applications. Clin. Chem. Lab. Med. 49, 1105–1111 (2011)

    PubMed  Google Scholar 

  21. M.C. van Staveren, H.J. Guchelaar, A.B... van Kuilenburg, H. Gelderblom, J.G. Maring, Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency. Pharmacogenomics J. 13, 389–395 (2013)

  22. A.M. Lostia, L. Lionetto, C. Ialongo, G. Gentile, A. Viterbo, P. Malaguti, I. Paris, L. Marchetti, P. Marchetti, A. De Blasi, M. Simmaco, A liquid chromatography–tandem mass spectrometry method for the determination of 5-fluorouracil degradation rate by intact peripheral blood. Ther. Drug Monit. 31, 482–488 (2009)

    CAS  PubMed  Google Scholar 

  23. S. Borges, Z. Desta, L. Li, T.C. Skaar, B.A. Ward, A. Nguyen, Y. Jin, A.M. Storniolo, D.M. Nikoloff, L. Wu, G. Hillman, D.F. Hayes, V. Stearns, D.A. Flockhart, Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin. Pharmacol. Ther. 80, 61–74 (2006)

    CAS  PubMed  Google Scholar 

  24. National Center for Biotechnology Information (NCBI). International Hapmap Consortium. http://hapmap.ncbi.nlm.nih.gov. Accessed 21 Jul 2014

  25. A. Paci, G. Veal, C. Bardin, D. Leveque, N. Widmer, J. Beijnen, A. Astier, E. Chatelut, Review of therapeutic drug monitoring of anticancer drugs part 1–cytotoxics. Eur. J. Cancer 50, 2010–2019 (2014)

    CAS  PubMed  Google Scholar 

  26. M. Saleem, G. Dimeski, C.M. Kirkpatrick, P.J. Taylor, J.H. Martin, Target concentration intervention in oncology: where are we at? Ther. Drug Monit. 34, 257–265 (2012)

    CAS  PubMed  Google Scholar 

  27. C. Bardin, G. Veal, A. Paci, E. Chatelut, A. Astier, D. Levêque, N. Widmer, J. Beijnen, Therapeutic drug monitoring in cancer–are we missing a trick? Eur. J. Cancer 50, 2005–2009 (2014)

    CAS  PubMed  Google Scholar 

  28. N. Widmer, C. Bardin, E. Chatelut, A. Paci, J. Beijnen, D. Levêque, G. Veal, A. Astier, Review of therapeutic drug monitoring of anticancer drugs part two–targeted therapies. Eur. J. Cancer 50, 2020–2036 (2014)

    CAS  PubMed  Google Scholar 

  29. E. Gamelin, R. Delva, J. Jacob, Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 2009–2105 (2008)

    Google Scholar 

  30. Y. Fujita, T. Nakamura, T. Aomori, Pharmacokinetic individualization of high-dose methotrexate chemotherapy for the treatment of localized osteosarcoma. J. Chemother. 22, 186–190 (2010)

    CAS  PubMed  Google Scholar 

  31. H.R. Haak, J. Hermans, C.J. van de Velde, Optimal treatment of adrenocortical carcinoma with mitotane: results in a consecutive series of 96 patients. Br. J. Cancer 69, 947–951 (1994)

    PubMed Central  CAS  PubMed  Google Scholar 

  32. D.H. Josephs, D.S. Fisher, J. Spicer, R.J. Flanagan, Clinical pharmacokinetics of tyrosine kinase inhibitors: implications for therapeutic drug monitoring. Ther. Drug Monit. 35, 562–587 (2013)

    CAS  PubMed  Google Scholar 

  33. A. Li-Wan-Po, P. Farndon, C. Craddock, M. Griffiths, Integrating pharmacogenetics and therapeutic drug monitoring: optimal dosing of imatinib as a case-example. Eur. J. Clin. Pharmacol. 66, 369–374 (2010)

    CAS  PubMed  Google Scholar 

  34. E. Petit-Jean, T. Buclin, M. Guidi et al., Erlotinib: another candidate for the therapeutic drug monitoring of targeted therapy of cancer? A pharmacokinetic and pharmacodynamic systematic review of literature. Ther. Drug Monit. (2014)

  35. P. Rousselot, L. Mollica, G. Etienne et al., Pharmacologic monitoring of dasatinib as first line therapy in newly diagnosed chronic phase chronic myelogenous leukemia (CP-CML) iden- tifies patients at higher risk of pleural effusion: a sub-analysis of the OPTIM-Dasatinib Trial. Blood 120 (2012) [(ASH Annual Meeting Abstracts): Abstract 3770]

  36. F.J. Giles, O.Q. Yin, W.M. Sallas et al., Nilotinib population pharmacokinetics and exposure-response analysis in patients with imatinib-resistant or –intolerant chronic myeloid leukemia. Eur. J. Clin. Pharmacol. 69, 813–823 (2013)

    PubMed  Google Scholar 

  37. J. Bullock, N. Mehrotra, New drug application clinical pharmacology review – everolimus. Food Drug Adm. Off. Clin. Pharmacol. 22–334 (2009)

  38. D. Ternant, G. Cartron, E. Hénin, M. Tod, P. Girard, G. Paintaud, Model-based design of rituximab dosage optimization in follicular non-Hodgkin’s lymphoma. Br. J. Clin. Pharmacol. 73, 597–605 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  39. P.M. Fracasso, H. Burris, M.A. Arquette, A phase 1 escalating single-dose and weekly fixed-dose study of cetuximab: pharmacokinetic and pharmacodynamic rationale for dosing. Clin. Cancer Res. 13, 986–993 (2007)

    CAS  PubMed  Google Scholar 

  40. K.E. Caudle, C. Thorn, T.E. Klein, J.J. Swen, H.L. McLeod, R.B. Diasio, M. Schwab, Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing. Clin. Pharmacol. Ther. 94, 640–645 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  41. D.V. Santi, C.S. Mchenry, 5-fluoro-2′-deoxyuridylate: covalent complex with thymidylate synthetase. Proc. Natl. Acad. Sci. U. S. A. 69, 1855–1857 (1972)

    PubMed Central  CAS  PubMed  Google Scholar 

  42. S. Gill, R.R. Thomas, R.M. Goldberg, Review article: colorectal cancer chemotherapy. Aliment. Pharmacol. Ther. 18, 683–692 (2003)

    CAS  PubMed  Google Scholar 

  43. G. Blackledge, New developments in cancer treatment with the novel thymidylate synthase inhibitor raltitrexed (‘Tomudex’). Br. J. Cancer 77, 29–37 (1998)

    PubMed Central  CAS  PubMed  Google Scholar 

  44. A. De Gramont, A. Figer, M. Seymour, M. Homerin, A. Hmissi, J. Cassidy, C. Boni, A. Cervantes, G. Freyer, D. Papamichael, N. Le Bail, C. Louvet, D. Hendler, F. De Braud, C. Wilson, F. Morvan, A. Bonetti, Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. 18, 2938–2947 (2000)

    PubMed  Google Scholar 

  45. J.Y. Douillard, D. Cunningham, A.D. Roth, M. Navarro, R.D. James, P. Karasek, P. Jandik, T. Iveson, J. Carmichael, M. Alakl, G. Gruia, L. Awad, P. Rougier, Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355, 1041–1047 (2000)

    CAS  PubMed  Google Scholar 

  46. J. Cassidy, L.B. Saltz, B.J. Giantonio, F.F. Kabbinavar, H.I. Hurwitz, U.P. Rohr, Effect of bevacizumab in older patients with metastatic colorectal cancer: pooled analysis of four randomized studies. J. Cancer Res. Clin. Oncol. 136, 737–743 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  47. J. Tol, M. Koopman, A. Cats, C.J. Rodenburg, G.J. Creemers, J.G. Schrama, F.L. Erdkamp, A.H. Vos, C.J. Van Groeningen, H.A. Sinnige, D.J. Richel, E.E. Voest, J.R. Dijkstra, M.E. Vink-Borger, N.F. Antonini, L. Mol, J.H. van Krieken, O. Dalesio, C.J. Punt, Chemotherapy, bevacizumab, and cetuximab in metastatic cororectal cancer. N. Engl. J. Med. 360, 563–572 (2009)

    CAS  PubMed  Google Scholar 

  48. M. Boisdron-Celle, G. Remaud, S. Traore, A.L. Poirier, L. Gamelin, A. Morel, E. Gamelin, 5-Fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett. 249, 271–282 (2007)

    CAS  PubMed  Google Scholar 

  49. U. Amstutz, S. Farese, S. Aebi, C.R. Largiadèr, Dihydropyrimidine dehydrogenase gene variation and severe 5-fluorouracil toxicity: a haplotype assessment. Pharmacogenomics 10, 931–944 (2009)

    CAS  PubMed  Google Scholar 

  50. T.S. Maughan, R.D. James, D.J. Kerr, J.A. Ledermann, C. McArdle, M.T. Seymour, C. Thopham, D. Cain, R.J. Stephens, Comparison of survival, palliation, and quality of life with three chemotherapy regimens in metastatic colorectal cancer: a multicentre randomised trial. Lancet 359, 1555–1563 (2002)

    CAS  PubMed  Google Scholar 

  51. M. Schwab, U.M. Zanger, C. Marx, E. Schaeffeler, K. Klein, J. Dippon, R. Kerb, J. Bilevernicht, J. Fisher, U. Hofmann, C. Bokemeyer, M. Eichelbaum, Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J. Clin. Oncol. 26, 2131–2138 (2008)

    CAS  PubMed  Google Scholar 

  52. G. Deboever, N. Hiltrop, M. Cool, G. Lambrecht, Alternative treatment options in colorectal cancer patients with 5-fluorouracil- or capecitabine-induced cardiotoxicity. Clin. Colorectal Cancer 12, 8–14 (2013)

    CAS  PubMed  Google Scholar 

  53. C. Thorn, S. Marsh, M.W. Carrillo, H.L. McLeod, T.E. Klein, R.B. Altman, PharmGKB summary: fluoropyrimidine pathways. Pharmacogenet. Genomics 21, 237–242 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  54. E. Casado, P. Pfeiffer, J. Feliu, M. González-Barón, L. Vestermark, H.A. Jensen, UFT (tegafur-uracil) in rectal cancer. Ann. Oncol. 19, 1371–1378 (2008)

    CAS  PubMed  Google Scholar 

  55. K. Chansky, J. Benedetti, J.S. Macdonald, Differences in toxicity between men and women treated with 5-fluorouracil therapy for colorectal carcinoma. Cancer 103, 1165–1171 (2005)

    CAS  PubMed  Google Scholar 

  56. J.A. Sloan, R.M. Goldberg, D.J. Sargent, D. Vargas-Chanes, S. Nair, S.S. Cha, P.J. Novotny, M.A. Poon, M.J. O’Connell, C.L. Loprinzi, Women experience greater toxicity with fluorouracil- based chemotherapy for colorectal cancer. J. Clin. Oncol. 20, 1491–1498 (2002)

    CAS  PubMed  Google Scholar 

  57. X. Zhao, Y. Yu, Incorporation of 5-fluorouracil into U2 snRNA blocks pseudouridylation and pre-mRNA splicing in vivo. Nucleic Acids Res. 35, 550–558 (2007)

    PubMed Central  CAS  PubMed  Google Scholar 

  58. The Pharmacogenomics Knowledge Base. http://www.pharmgkb.org. Accessed 30 Nov 2014

  59. A. Morel, M. Boisdron-Celle, L. Fey, P. Soulie, M.C. Craipeau, S. Traore, E. Gamelin, Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol. Cancer Ther. 5, 2895–2904 (2006)

    CAS  PubMed  Google Scholar 

  60. D. Salonga, K.D. Danenberg, M. Johnson, R. Metzger, S. Groshen, D.D. Tsao-Wei, H. Lenz, C.G. Leichman, L. Leichman, R.B. Diasio, P.V. Danenberg, Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin. Cancer Res. 6, 1322–1327 (2000)

    CAS  PubMed  Google Scholar 

  61. A.B... van Kuilenburg, Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur. J. Cancer 40, 939–950 (2004)

  62. D. Cubero, A. Del Giglio, Tegafur-uracil (UFT) in lower doses is safe for the treatment of colorectal cancer in patients with partial dihydropyrimidine dehydrogenase deficiency: a proof of principle. Ther. Adv. Med. Oncol. 5, 93–104 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  63. K.M. Au, C.K. Lai, Y.P. Yuen, C.C. Shek, C.W. Lam, A.Y. Chan, Diagnosis of dihydropyrimidine dehydrogenase deficiency in a neonate with thymine-uraciluria. Hong Kong Med J. 9, 130–132 (2003)

    CAS  PubMed  Google Scholar 

  64. S.M. Offer, C.C. Fossum, N.J. Wegner, A.J. Stuflesser, G.L. Butterfield, R.B. Diasio, Comparative functional analysis of DPYD variants of potential clinical relevance to dihydropyrimidine dehydrogenase activity. Cancer Res. 74, 2545–2554 (2014)

    CAS  PubMed  Google Scholar 

  65. M. Raida, W. Schwabe, P. Häusler, Prevalence of a common point mutation in the Dihydropyrimidine Dehydrogenase (DPD) Gene within the 5′ -splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clin. Cancer Res. 7, 1832–1839 (2001)

    Google Scholar 

  66. U. Amstutz, T.K. Froehlich, C.R. Largiadèr, Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 12, 1321–1336 (2011)

    CAS  PubMed  Google Scholar 

  67. A.B... van Kuilenburg, J. Meijer, A.N. Mul, R. Meinsma, V. Schmid, D. Dobritzsch, R.C. Hennekam, M.M. Mannens, M. Kiechle, M.-C. Etienne-Grimaldi, H.-J. Klümpen, J.G. Maring, V.A. Derleyn, E. Maartense, G. Milano, R. Vijzelaar, E. Gross, Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity. Hum. Genet. 128, 529–538 (2010)

  68. A. Loganayagam, M.A. Hernandez, A. Corrigan, L. Fairbanks, C.M. Lewis, P. Harper, N. Maisey, P. Ross, J.D. Sanderson, A.M. Marinaki, Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br. J. Cancer 108, 2505–2515 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  69. M.J. Deenen, J. Tol, A.M. Burylo, V.D. Doodeman, A. de Boer, A. Vincent, H.-J. Guchelaar, P.H. Smits, J.H. Beijnen, C.J.A. Punt, J.H. Schellens, A. Cats, Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin. Cancer Res. 17, 3455–3468 (2011)

    CAS  PubMed  Google Scholar 

  70. T.K. Froehlich, U. Amstutz, S. Aebi, M. Joerger, C.R. Largiadèr, Clinical importants of risk variants in the dihydropirimidine dehydrogenase gene for the prediction of early-onset fluoropyrimidine toxicity. Int. J. Cancer. Accepted Article, doi: 10.1002/ijc.29025

  71. S.A. Ridge, J. Sludden, O. Brown, L. Robertson, X. Wei, A. Sapone, P.M. Fernandez-Salguero, F.J. Gonzalez, P. Vreken, A.B... van Kuilenburg, A.H. van Gennip, H.L. McLeod, Dihydropyrimidine dehydrogenase pharmacogenetics in Caucasian subjects. Br. J. Clin. Pharmacol. 46, 151–156 (1998)

  72. A. Tsunoda, K. Nakao, M. Watanabe, N. Matsui, A. Ooyama, M. Kusano, Associations of various gene polymorphisms with toxicity in colorectal cancer patients receiving oral uracil and tegafur plus leucovorin: a prospective study. Ann. Oncol. 22, 355–361 (2011)

    CAS  PubMed  Google Scholar 

  73. J. Savva-Bordalo, J. Ramalho-Carvalho, M. Pinheiro, V.L. Costa, A. Rodrigues, P.C. Dias, I. Veiga, M. Machado, M.R. Teixeira, R. Henrique, C. Jerónimo, Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients. BMC Cancer 10 (2010)

  74. U. Amstutz, S. Farese, S. Aebi, C.R. Largiadèr, Hypermethylation of the DPYD promoter region is not a major predictor of severe toxicity in 5-fluorouracil based chemotherapy. J. Exp. Clin. Cancer Res. 27 (2008)

  75. L. Paré, D. Paez, J. Salazar, E. Del Rio, E. Tizzano, E. Marcuello, M. Baiget, Absence of large intragenic rearrangements in the DPYD gene in a large cohort of colorectal cancer patients treated with 5-FU-based chemotherapy. Br. J. Clin. Pharmacol. 70, 268–272 (2010)

    PubMed Central  PubMed  Google Scholar 

  76. S.J. Johnston, S.A. Ridge, J. Cassidy, H.L. Mcleod, Regulation of Dihydropyrimidine Dehydrogenase in Colorectal Cancer. Clin. Cancer Res. 5, 2566–2570 (1999)

    CAS  PubMed  Google Scholar 

  77. T. Hirota, Y. Date, Y. Nishibatake, H. Takane, Y. Fukuoka, Y. Taniguchi, N. Burioka, E. Shimizu, H. Nakamura, K. Otsubo, I. Ieiri, Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer 77, 16–23 (2012)

    PubMed  Google Scholar 

  78. S.M. Offer, G.L. Butterfield, C.R. Jerde, C.C. Fossum, N.J. Wegner, R.B. Diasio, microRNAs miR-27a and miR-27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites. Mol. Cancer Ther. 13, 742–751 (2014)

    PubMed Central  CAS  PubMed  Google Scholar 

  79. M. Fenech, The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat. Res. 475, 57–67 (2001)

    CAS  PubMed  Google Scholar 

  80. S. Kaneda, J. Nalbantoglu, K. Takeishi, O. Gotoh, T. Seno, D. Ayusawa, Structural and functional analysis of the human thymidilate synthase gene. J. Biol. Chem. 265, 20277–20284 (1990)

    CAS  PubMed  Google Scholar 

  81. N. Touroutoglou, R. Pazdur, Thymidylate synthase inhibitors. Clin. Cancer Res. 2, 227–243 (1996)

    CAS  PubMed  Google Scholar 

  82. S. Popat, A. Matakidou, R.S. Houlston, Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J. Clin. Oncol. 22, 529–536 (2004)

    CAS  PubMed  Google Scholar 

  83. S. Marsh, Thymidylate synthase pharmacogenetics. Invest. New Drugs 23, 533–537 (2005)

    CAS  PubMed  Google Scholar 

  84. C.-M. Gao, J.-H. Ding, S.-P. Li, Y.-T. Liu, H.-X. Cao, J.-Z. Wu, K. Tajima, Polymorphisms in the thymidylate synthase gene and risk of colorectal cancer. Asian Pac. J. Cancer Prev. 13, 4087–4091 (2012)

    PubMed  Google Scholar 

  85. M.V. Mandola, J. Stoehlmacher, S. Muller-weeks, G. Cesarone, M.C. Yu, H.-J. Lenz, R.D. Ladner, A novel single nucleotide polymorphism within the 5′ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res. 63, 2898–2904 (2003)

    CAS  PubMed  Google Scholar 

  86. F. Graziano, K. Kawakami, G. Watanabe, A. Ruzzo, B. Humar, D. Santini, V. Catalano, R. Ficarelli, T. Merriman, S. Panunzi, E. Testa, S. Cascinu, I. Bearzi, G. Tonini, M. Magnani, Association of thymidylate synthase polymorphisms with gastric cancer susceptibility. Int. J. Cancer 112, 1010–1014 (2004)

    CAS  PubMed  Google Scholar 

  87. N. Horie, H. Aiba, K. Oguro, H. Hojo, K. Takeishi, Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct. Funct. 20, 191–197 (1995)

    CAS  PubMed  Google Scholar 

  88. A. Yawata, S.-R. Kim, A. Miyajima, T. Kubo, S. Ishida, Y. Saito, Y. Nakajima, N. Katori, Y. Matsumoto, M. Fukuoka, Y. Ohno, S. Ozawa, J.-I. Sawada, Polymorphic tandem repeat sequences of the thymidylate synthase gene correlates with cellular-based sensitivity to fluoropyrimidine antitumor agents. Cancer Chemother. Pharmacol. 56, 465–472 (2005)

    CAS  PubMed  Google Scholar 

  89. W. Tan, X. Miao, L. Wang, C. Yu, P. Xiong, G. Liang, T. Sun, Y. Zhou, X. Zhang, H. Li, D. Lin, Significant increase in risk of gastroesophageal cancer is associated with interaction between promoter polymorphisms in thymidylate synthase and serum folate status. Carcinogenesis 26, 1430–1435 (2005)

    CAS  PubMed  Google Scholar 

  90. S. Afzal, M. Gusella, B. Vainer, U.B. Vogel, J.T. Andersen, K. Broedbaek, M. Petersen, E. Jimenez-Solem, L. Bertolaso, C. Barile, R. Padrini, F. Pasini, S.A. Jensen, q.H.E. Poulsen, Combinations of polymorphisms in genes involved in the 5-Fluorouracil metabolism pathway are associated with gastrointestinal toxicity in chemotherapy-treated colorectal cancer patients. Clin. Cancer Res. 17, 3822–3829 (2011)

    CAS  PubMed  Google Scholar 

  91. C.E. de Bock, M.B. Garg, N. Scott, J.A. Sakoff, F.E. Scorgie, S.P. Ackland, L.F. Lincz, Association of thymidylate synthase enhancer region polymorphisms with thymidylate synthase activity in vivo. Pharmacogenomics J. 11, 307–314 (2011)

    PubMed  Google Scholar 

  92. S. Ghosh, J.M. Winter, K. Patel, S.E. Kern, Reexamining a proposal: thymidylate synthase 5′-untranslated region as a regulator of translation efficiency. Cancer Biol. Ther. 12, 750–755 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  93. L. Paré, E. Marcuello, A. Altés, E. del Río, L. Sedano, J. Salazar, A. Cortés, A. Barnadas, M. Baiget, Pharmacogenetic prediction of clinical outcome in advanced colorectal cancer patients receiving oxaliplatin/5-fluorouracil as first-line chemotherapy. Br. J. Cancer 99, 1050–1055 (2008)

    PubMed Central  PubMed  Google Scholar 

  94. R. Pullmann, K. Abdelmohsen, A. Lal, J.L. Martindale, R.D. Ladner, M. Gorospe, Differential stability of thymidylate synthase 3′-untranslated region polymorphic variants regulated by AUF1. J. Biol. Chem. 281, 23456–23463 (2006)

    CAS  PubMed  Google Scholar 

  95. X. Zhai, J. Gao, Z. Hu, J. Tang, J. Qin, S. Wang, X. Wang, G. Jin, J. Liu, W. Chen, F. Chen, X. Wang, Q. Wei, H. Shen, Polymorphisms in thymidylate synthase gene and susceptibility to breast cancer in a Chinese population: a case–control analysis. BMC Cancer 6 (2006)

  96. J.W. Lu, C.M. Gao, J.Z. Wu, H.X. Cao, K. Tajima, J.F. Feng, Polymorphism in the 3′-untranslated region of the thymidylate synthase gene and sensitivity of stomach cancer to fluoropyrimidine-based chemotherapy. J. Hum. Genet. 51, 155–160 (2006)

    CAS  PubMed  Google Scholar 

  97. R. Sharma, J.M. Hoskins, L.P. Rivory, M. Zucknick, R. London, C. Liddle, S.J. Clarke, Thymidylate synthase and methylenetetrahydrofolate reductase gene polymorphisms and toxicity to capecitabine in advanced colorectal cancer patients. Clin. Cancer Res. 14, 817–825 (2008)

    CAS  PubMed  Google Scholar 

  98. M.S. Braun, S.D. Richman, L. Thompson, C.L. Daly, A.M. Meade, J.W. Adlard, J.M. Allan, K.B. Parmar, P. Quirke, M.T. Seymour, Association of molecular markers with toxicity outcomes in a randomized trial of chemotherapy for advanced colorectal cancer: the FOCUS trial. J. Clin. Oncol. 27, 5519–5528 (2009)

    CAS  PubMed  Google Scholar 

  99. G. Lurje, P.C. Manegold, Y. Ning, A. Pohl, W. Zhang, H.J. Lenz, Thymidylate synthase gene variations: predictive and prognostic markers. Mol. Cancer Ther. 8, 1000–1007 (2009)

    CAS  PubMed  Google Scholar 

  100. D. Rosmarin, C. Palles, A. Pagnamenta, K. Kaur, G. Pita, M. Martin, E. Domingo, A. Jones, K. Howarth, L. Freeman-Mills, E. Johnstone, H. Wang, S. Love, C. Scudder, P. Julier, C. Fernández-Rozadilla, C. Ruiz-Ponte, A. Carracedo, S. Castellvi-Bel, A. Castells, A. Gonzalez-Neira, J. Taylor, R. Kerr, D. Kerr, I. Tomlinson, A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut, 1–10 (2014)

  101. B.A. Jennings, G. Willis, How folate metabolism affects colorectal cancer development and treatment; a story of heterogeneity and pleiotropy. Cancer Lett. (2014)

  102. M. Izmirli, A literature review of MTHFR (C677T and A1298C polymorphisms) and cancer risk. Mol. Biol. Rep. 40, 625–637 (2013)

    CAS  PubMed  Google Scholar 

  103. O. Castillo-Fernández, M. Santibáñez, A. Bauza, G. Calderillo, C. Castro, R. Herrera, A. Serrano, O. Arrieta, L.A. Herrera, Methylenetetrahydrofolate reductase polymorphism (677 C>T) predicts long time to progression in metastatic colon cancer treated with 5-fluorouracil and folinic acid. Arch. Med. Res. 41, 430–435 (2010)

    PubMed  Google Scholar 

  104. M. Gusella, A.C. Frigo, C. Bolzonella, R. Marinelli, C. Barile, A. Bononi, G. Crepaldi, D. Menon, L. Stievano, S. Toso, F. Pasini, E. Ferrazzi, R. Padrini, Predictors of survival and toxicity in patients on adjuvant therapy with 5-fluorouracil for colorectal cancer. Br. J. Cancer 100, 1549–1557 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  105. E. Marcuello, A. Altés, A. Menoyo, E. Del Rio, M. Baiget, Methylenetetrahydrofolate reductase gene polymorphisms: genomic predictors of clinical response to fluoropyrimidine-based chemotherapy? Cancer Chemother. Pharmacol. 57, 835–840 (2006)

    CAS  PubMed  Google Scholar 

  106. A. Ruzzo, F. Graziano, F. Loupakis, E. Rulli, E. Canestrari, D. Santini, V. Catalano, R. Ficarelli, P. Maltese, R. Bisonni, G. Masi, G. Schiavon, P. Giordani, L. Giustini, A. Falcone, G. Tonini, R. Silva, R. Mattioli, I. Floriani, M. Magnani, Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line FOLFOX-4 chemotherapy. J. Clin. Oncol. 25, 1247–1254 (2007)

    CAS  PubMed  Google Scholar 

  107. E. Zintzaras, D.C. Ziogas, G.D. Kitsios, A.A. Papathanasiou, J. Lau, G. Raman, MTHFR gene polymorphisms and response to chemotherapy in colorectal cancer: a meta-analysis. Pharmacogenomics 10, 1285–1294 (2009)

    CAS  PubMed  Google Scholar 

  108. M.C. Etienne-Grimaldi, G. Milano, F. Maindrault-Goebel, B. Chibaudel, J.-L. Formento, M. Francoual, G. Lledo, T. André, M. Mabro, L. Mineur, M. Flesch, E. Carola, A. de Gramont, Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and FOLFOX response in colorectal cancer patients. Br. J. Clin. Pharmacol. 69, 58–66 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  109. D. Caronia, M. Martin, J. Sastre, J. de la Torre, J.A. García-Sáenz, M.R. Alonso, L.T. Moreno, G. Pita, E. Díaz-Rubio, J. Benítez, A. González-Neira, A polymorphism in the cytidine deaminase promoter predicts severe capecitabine-induced hand-foot syndrome. Clin. Cancer Res. 17, 2006–2013 (2011)

    CAS  PubMed  Google Scholar 

  110. K. Kim, G. Jang, Y.S. Hong, H.-S. Lim, K. Bae, H.S. Kim, S.S. Lee, J.G. Shin, J.L. Lee, M.H. Ryu, H.M. Chang, Y.K. Kang, T.W. Kim, Phase II study of S-1 combined with oxaliplatin as therapy for patients with metastatic biliary tract cancer: influence of the CYP2A6 polymorphism on pharmacokinetics and clinical activity. Br. J. Cancer 104, 605–612 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  111. T. Suzuki, K. Matsuo, K. Hirose, A. Hiraki, T. Kawase, M. Watanabe, T. Yamashita, H. Iwata, K. Tajima, One-carbon metabolism-related gene polymorphisms and risk of breast cancer. Carcinogenesis 29, 356–362 (2008)

    CAS  PubMed  Google Scholar 

  112. J. Fidlerova, P. Kleiblova, M. Bilek, S. Kormunda, Z. Formankova, J. Novotny, Z. Kleibl, Contribution of dihydropyrimidinase gene alterations to the development of serious toxicity in fluoropyrimidine-treated cancer patients. Cancer Chemother. Pharmacol. 65, 661–669 (2010)

    CAS  PubMed  Google Scholar 

  113. N. Hamajima, M. Kouwaki, P. Vreken, K. Matsuda, S. Sumi, M. Imaeda, S. Ohba, K. Kidouchi, M. Nonaka, M. Sasaki, N. Tamaki, Y. Endo, R. De Abreu, J. Rotteveel, A. van Kuilenburg, A. van Gennip, H. Togari, Y. Wada, Dihydropyrimidinase deficiency: structural organization, chromosomal localization, and mutation analysis of the human dihydropyrimidinase gene. Am. J. Hum. Genet. 63, 717–726 (1998)

    PubMed Central  CAS  PubMed  Google Scholar 

  114. A. van Kuilenburg, R. Meinsma, B.A. Zonnenberg, L. Zoetekouw, F. Baas, K. Matsuda, N. Tamaki, Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin. Cancer Res. 9, 4363–4367 (2003)

    PubMed  Google Scholar 

  115. S. Komori, S. Osada, H. Tomita, K. Nishio, I. Kumazawa, S. Tachibana, J. Tsuchiya, K. Yoshida, Predictive value of orotate phosphoribosyltransferase in colorectal cancer patients receiving 5-FU-based chemotherapy. Mol. Clin. Oncol. 1, 453–460 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  116. G.B. Elion, G.H. Hitchings, H. Vanderwerff, Antagonists of nucleic acid derivates: VI purines. J. Biol. Chem. 192, 505–518 (1951)

    CAS  PubMed  Google Scholar 

  117. M.V. Relling, E.E. Gardner, W.J. Sandborn, K. Schmiegelow, C.H. Pui, S.W. Yee, C.M. Stein, M. Carrillo, W.E. Evans, T.E. Klein, Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89, 387–391 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  118. A.M. Wall, J.E. Rubnitz, Pharmacogenomic effects on therapy for acute lymphoblastic leukemia in children. Pharmacogenomics J. 3, 128–135 (2003)

    CAS  PubMed  Google Scholar 

  119. W.E. Evans, Y.Y. Hon, L. Bomgaars, S. Coutre, M. Holdsworth, R. Janco, D. Kalwinsky, F. Keller, Z. Khatib, J. Margolin, J. Murray, J. Quinn, Y. Ravindranath, K. Ritchey, W. Roberts, Z.R. Rogers, D. Schiff, C. Steuber, F. Tucci, N. Kornegay, E.Y. Krynetski, M.V. Relling, Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine. J. Clin. Oncol. 19, 2293–2301 (2001)

    CAS  PubMed  Google Scholar 

  120. L. Wang, R. Weinshilboum, Thiopurine S-methyltransferase pharmacogenetics: insights, challenges and future directions. Oncogene 25, 1629–1638 (2006)

    CAS  PubMed  Google Scholar 

  121. B. Lund, A. Asberg, M. Heyman, J. Kanerva, A. Harila-Saari, H. Hasle, S. Stefan, O. Gisli Jònsson, S. Lydersen, K. Schiemegelow, Risk factors for treatment related mortality in childhood acute lymphoblastic. Pediatr. Blood Cancer 56, 551–559 (2011)

    PubMed  Google Scholar 

  122. S. Sahasranaman, D. Howard, S. Roy, Clinical pharmacology and pharmacogenetics of thiopurines. Eur. J. Clin. Pharmacol. 64, 753–767 (2008)

    CAS  PubMed  Google Scholar 

  123. P. Dorababu, N. Nagesh, V.G. Linga, S. Gundeti, V.K. Kutala, P. Reddanna, R. Digumarti, Epistatic interactions between thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphatase (ITPA) variations determine 6-mercaptopurine toxicity in Indian children with acute lymphoblastic leukemia. Eur. J. Clin. Pharmacol. 68, 379–387 (2012)

    CAS  PubMed  Google Scholar 

  124. J.P. Gisbert, F. Gomollón, Thiopurine-induced myelotoxicity in patients with inflammatory bowel disease: a review. Am. J. Gastroenterol. 103, 1783–1800 (2008)

    PubMed  Google Scholar 

  125. M. Stanulla, E. Schaeffeler, T. Flohr, G. Cario, A. Schrauder, M. Zimmermann, K. Welte, W. Ludwig, C.R. Bartram, U.M. Zanger, M. Eichelbaum, M. Schrappe, M. Schwab, Genotype and Early Treatment Response to Mercaptopurine in Childhood. JAMA 293, 1485–1489 (2005)

    CAS  PubMed  Google Scholar 

  126. L. Chouchana, C. Narjoz, D. Roche, J. Golmard, B. Pineau, G. Chatellier, P. Beaune, M. Loriot, Interindividual variability in TPMT enzyme activity: 10 years of experience with thiopurine pharmacogenetics and therapeutic drug monitoring. Pharmacogenomics 15, 745–757 (2014)

    CAS  PubMed  Google Scholar 

  127. J.P. Gisbert, F. Gomollon, C. Cara, M. Luna, Y. Gonzales-Lama, P. Jos, Thiopurine methyltransferase activity in Spain: a study of 14,545 patients. Dig. Dis. Sci. 52, 1262–1269 (2007)

    CAS  PubMed  Google Scholar 

  128. D.M. Otterness, C.L. Szumlanski, T.C. Wood, R.M. Weinshilboum, Human thiopurine methyltransferase pharmacogenetics kindred with a terminal exon splice junction mutation that results in loss of activity. J. Clin. Invest. 101, 1036–1044 (1997)

    Google Scholar 

  129. E. Schaeffeler, U.M. Zanger, M. Eichelbaum, S. Asante-Poku, J.G. Shin, M. Schwab, Highly multiplexed genotyping of thiopurine s-methyltransferase variants using MALD-TOF mass spectrometry: reliable genotyping in different ethnic groups. Clin. Chem. 54, 1637–1647 (2008)

    CAS  PubMed  Google Scholar 

  130. L. Wang, L. Pelleymounter, R. Weinshilboum, J. Johnson, J. Hebert, R.B. Altman, T.E. Klein, Very important pharmacogene summary: thiopurine S-methyltransferase. Pharmacogenet. Genomics 20, 401–405 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  131. A. Matimba, F. Li, A. Livshits, C.S. Cartwright, S. Scully, B.L. Fridley, G. Jenkins, A. Batzler, L. Wang, R. Weinshilboum, L. Lennard, Thiopurine pharmacogenomics: association of SNPs with clinical response and functional validation of candidate genes. Pharmacogenomics 15, 433–447 (2014)

    PubMed Central  CAS  PubMed  Google Scholar 

  132. S. Alves, A. Amorim, F. Ferreira, M.J. Prata, Influence of the variable number of tandem repeats located in the promoter region of the thiopurine methyltransferase gene on enzymatic activity. Clin. Pharmacol. Ther. 70, 165–174 (2001)

    CAS  PubMed  Google Scholar 

  133. M.L. Appell, J. Berg, J. Duley, W.E. Evans, M.A. Kennedy, L. Lennard, T. Marinaki, H.L. McLeod, M.V. Relling, E. Schaeffeler, M. Schwab, R. Weinshilboum, A.E.J. Yeoh, E.M. McDonagh, J.M. Hebert, T.E. Klein, S.A. Coulthard, Nomenclature for alleles of the thiopurine methyltransferase gene. Pharmacogenet. Genomics 23, 242–248 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Institutionem for medicin och alsa (IMH), Linkoping UniversityTPMT nomenclature committee. http://www.imh.liu.se/tpmtalleles. Accessed 25 Jul 2014

  135. M.J. Farfan, C. Salas, C. Canales, F. Silva, M. Villarroel, K. Kopp, J.P. Torres, M.E. Santolaya, J. Morales, Prevalence of TPMT and ITPA gene polymorphisms and effect on mercaptopurine dosage in Chilean children with acute lymphoblastic leukemia. BMC Cancer 14 (2014)

  136. C.A. Rabik, M.E. Dolan, Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat. Rev. 33, 9–23 (2007)

    PubMed Central  CAS  PubMed  Google Scholar 

  137. L. Kelland, The resurgence of platinum-based cancer chemotherapy. Cancer 7, 573–584 (2007)

    CAS  PubMed  Google Scholar 

  138. W. Yu, M. Gwinn, M. Clyne, M. Yesupriya, M.J. Khoury, A navigator for human genome epidemiology. Nat. Genet. 40, 124–125 (2008)

    CAS  PubMed  Google Scholar 

  139. A.V. Khrunin, D.V. Khokhrin, A.A. Moisseev, V.A. Gorbunova, S.A. Limborska, Pharmacogenomic assessment of cisplatin-based chemotherapy outcomes in ovarian cancer. Pharmacogenomincs 15, 329–337 (2014)

    Google Scholar 

  140. K. Pussegoda, C.J. Ross, H. Visscher, M. Yazdanpanah, B. Brooks, S.R. Rassekh, Y.F. Zada, M.P. Dubé, B.C. Carleton, M.R. Hayden, CPNDS Consortium, Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin. Pharmacol. Ther. 94, 243–251 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  141. C.C. Pan, A. Eisbruch, J.S. Lee, R.M. Snorrason, R.K. Ten Haken, P.R. Kileny, Prospective study of inner ear radiation dose and hearing loss in head-and-neck cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 61, 1393–1402 (2005)

    PubMed  Google Scholar 

  142. K.W. Chang, N. Chinosornvatana, Practical grading system for evaluating cisplatin ototoxicity in children. J. Clin. Oncol. 28, 1788–1795 (2010)

    CAS  PubMed  Google Scholar 

  143. C.J. Ross, H. Katzov-Eckert, M.P. Dubé, B. Brooks, S.R. Rassekh, A. Barhdadi, Y. Feroz-Zada, H. Visscher, A.M. Brown, M.J. Rieder, P.C. Rogers, M.S. Phillips, B.C. Carleton, M.R. Hayden, CPNDS Consortium, Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat. Genet. 41, 1345–1349 (2009)

    CAS  PubMed  Google Scholar 

  144. J.J. Yang, J.Y. Lim, J. Huang, J. Bass, J. Wu, C. Wang, J. Fang, E. Stewart, E.H. Harstead, S. E, G.W. Robinson, W.E. Evans, A. Pappo, J. Zuo, M.V. Relling, A. Onar-Thomas, A. Gajjar, C.F. Stewart, The role of inherited TPMT and COMT genetic variation in cisplatin-induced ototoxicity in children with cancer. Clin. Pharmacol. Ther. 94, 252–259 (2013)

  145. M.J. Ratain, N.J. Cox, T.O. Henderson, Challenges in interpreting the evidence for genetic predictors of ototoxicity. Clin. Pharmacol. Ther. 94, 631–635 (2013)

    CAS  PubMed  Google Scholar 

  146. W.T. Lim, S.T. Lim, N.S. Wong, W.H. Koo, CPT-11 and cisplatin in the treatment. J. Chemother. 15, 400–405 (2003)

    CAS  PubMed  Google Scholar 

  147. K. Yamamoto, K. Kokawa, N. Umesaki, R. Nishimura, K. Hasegawa, I. Konishi, F. Saji, M. Nishida, H. Noguchi, K. Takizawa, Phase I study of combination chemotherapy with irinotecan hydrochloride and nedaplatin for cervical squamous cell carcinoma: Japanese Gynecologic Oncology Group study. Oncol. Rep. 21, 1005–1009 (2009)

    CAS  PubMed  Google Scholar 

  148. L.B. Saltz, J.V. Cox, C. Blanke, L.S. Rosen, L. Fehrenbacher, M.J. Moore, J.A. Maroun, S.P. Ackland, P.K. Locker, N. Pirotta, G.L. Elfring, L.L. Miller, Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 50, 905–914 (2000)

    Google Scholar 

  149. F. Innocenti, R.L. Schilsky, J. Ramírez, L. Janisch, S. Undevia, L.K. House, S. Das, K. Wu, M. Turcich, R. Marsh, T. Karrison, M.L. Maitland, R. Salgia, M.J. Ratain, Dose-finding and pharmacokinetic study to optimize the dosing of irinotecan according to the UGT1A1 genotype of patients with cancer. J. Clin. Oncol. 32, 1–7 (2014)

    Google Scholar 

  150. G. Middleton, S. Brown, C. Lowe, T. Maughan, S. Gwyther, A. Oliver, S. Richman, D. Blake, V. Napp, H. Marshall, J. Wadsley, N. Maisey, I. Chau, M. Hill, S. Gollins, S. Myint, S. Slater, J. Wagstaff, J. Bridgewater, M. Seymour, A randomised phase III trial of the pharmacokinetic biomodulation of irinotecan using oral ciclosporin in advanced colorectal cancer: results of the Panitumumab, Irinotecan & Ciclosporin in COLOrectal cancer therapy trial (PICCOLO). Eur. J. Cancer 49, 3507–3516 (2013)

    CAS  PubMed  Google Scholar 

  151. E. Gupta, T.M. Lestingi, R. Mick, J. Ramirez, E.E. Vokes, M.J. Ratain, Metabolic fate of irinotecan in humans: correlation of glucuronidation with diarrhea. Cancer Res. 54, 3723–3725 (1994)

    CAS  PubMed  Google Scholar 

  152. M. Yashiro, H. Qiu, T. Hasegawa, X. Zhang, T. Matsuzaki, K. Hirakawa, An EGFR inhibitor enhances the efficacy of SN38, an active metabolite of irinotecan, in SN38-refractory gastric carcinoma cells. Br. J. Cancer 105, 1522–1532 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  153. S. Paillas, A. Causse, L. Marzi, P. De Medina, M. Poirot, V. Denis, N. Vezzio-Vie, L. Espert, H. Arzouk, A. Coquelle, P. Martineau, M. Del Rio, S. Pattingre, C. Gongora, MAPK14/p38 a confers irinotecan resistance to TP53-defective cells by inducing survival autophagy. Autophagy 8, 1098–1112 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  154. V. Servedio, M. Apolito, N. Maiorano, B. Minuti, F. Torricelli, F. Ronchi, L. Zancan, S. Perrotta, P. Vajro, L. Boschetto, Spectrum of UGT1A1 mutations in Crigler-Najjar (CN) syndrome patients: identification of twelve novel alleles and genotype-phenotype correlation. Hum. Mutat. 793, 1–9 (2005)

    Google Scholar 

  155. A. Kadakol, S.S. Ghosh, B.S. Sappal, G. Sharma, J.R. Chowdhury, N.R. Chowdhury, Genetic lesions of bilirubin Uridine-diphospho-glucuronate Glucuronosyltransferase (UGT1A1) causing Crigler-Najjar and Gilbert Syndromes: correlation of genotype to phenotype. Hum. Mutat. 306, 297–306 (2000)

    Google Scholar 

  156. K.S. Tang, H.F. Chiu, H.H. Chen, H.L. Eng, C.J. Tsai, H.C. Teng, C.S. Huang, Link between colorectal cancer and polymorphisms in the uridine-diphosphoglucuronosyltransferase 1A7 and 1A1 genes. World J. Gastroenterol. 11, 3250–3254 (2005)

    PubMed Central  CAS  PubMed  Google Scholar 

  157. L. Cheng, M. Li, J. Hu, W. Ren, L. Xie, Z.P. Sun, B.R. Liu, G.X. Xu, X.L. Dong, X.P. Qian, UGT1A1*6 polymorphisms are correlated with irinotecan-induced toxicity: a system review and meta-analysis in Asians. Cancer Chemother. Pharmacol. 73, 551–560 (2014)

    CAS  PubMed  Google Scholar 

  158. F. Han, C. Guo, D. Yu, J. Zhu, L. Gong, G. Li, Y. Lv, H. Liu, G. An, L. Liu, Associations between UGT1A1*6 or UGT1A1*6/*28 polymorphisms and irinotecan-induced neutropenia in Asian cancer patients. Cancer Chemother. Pharmacol. 73, 779–788 (2014)

    CAS  PubMed  Google Scholar 

  159. F. Innocenti, S.D. Undevia, L. Iyer, P.X. Chen, S. Das, M. Kocherginsky, T. Karrison, L. Janisch, J. Ramírez, C.M. Rudin, E.E. Vokes, M.J. Ratain, Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol. 22, 1382–1388 (2004)

    CAS  PubMed  Google Scholar 

  160. J.M. Hoskins, R.M. Goldberg, P. Qu, J.G. Ibrahim, H.L. Mcleod, Neutropenia: dose matters, 99, 1290–1295 (2007)

  161. J.M. Barbarino, C.E. Haidar, T.E. Klein, R.B. Altman, PharmGKB summary: very important pharmacogene information for UGT1A1. Pharmacogenet. Genomics 24, 177–183 (2014)

    PubMed Central  CAS  PubMed  Google Scholar 

  162. T.O. Lankisch, C. Schulz, T. Zwingers, T.O. Lankisch, C. Schulz, T. Zwingers, T.J. Erichsen, M.P. Manns, V. Heinemann, C.P. Strassburg, Gilbert’s syndrome and irinotecan toxicity: combination with udp-glucuronosyltransferase 1A7 variants increases risk. Cancer Epidemiol. Biomarkers Prev. 17, 695–701 (2008)

    CAS  PubMed  Google Scholar 

  163. E. Cecchin, F. Innocenti, M.D. Andrea, G. Corona, E. De Mattia, P. Biason, A. Buonadonna, G. Toffoli, Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin and irinotecan. J Clin Oncol. 27, 2457–2465 (2009)

    CAS  PubMed  Google Scholar 

  164. M. Ciotti, N. Basu, M. Brangi, I.S. Owens, Glucuronidation of 7-ethyl-10-hydroxycamptothecin (SN-38) by the human UDP-glucuronosyltransferases encoded at the UGT1 locus. Biochem. Biophys. Res. Commun. 260, 199–202 (1999)

    CAS  PubMed  Google Scholar 

  165. M. Whirl-Carrillo, E.M. McDonagh, J. Hebert, L. Gong, K. Sangkuhl, C.F. Thorn, R.B. Altman, T.E. Klein, Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92, 414–417 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  166. C.H. Pui, Rasburicase: a potent uricolytic agent. Expert. Opin. Pharmacother. 3, 433–442 (2002)

    CAS  PubMed  Google Scholar 

  167. P.J. Mason, J.M. Bautista, F. Gilsanz, G6PD deficiency: the genotype-phenotype association. Blood Rev. 21, 267–283 (2007)

    CAS  PubMed  Google Scholar 

  168. A. Minucci, K. Moradkhani, M.J. Hwang, C. Zuppi, B. Giardina, E. Capoluongo, Glucose-6-phosphate dehydrogenase (G6PD) mutations database: review of the “old” and update of the new mutations. Blood Cells Mol. Dis. 48, 154–165 (2012)

    CAS  PubMed  Google Scholar 

  169. L. Luzzatto, E. Seneca, G6PD deficiency: a classic example of pharmacogenetics with on-going clinical implications. Br. J. Haematol. 164, 469–480 (2014)

    PubMed Central  CAS  PubMed  Google Scholar 

  170. E.T. Nkhoma, C. Poole, V. Vannappagari, S.A. Hall, E. Beutler, The global prevalence of glucose-6-phosphate dehydrogenase deficiency: a systematic review and meta-analysis. Blood Cells Mol. Dis. 42, 267–278 (2009)

    CAS  PubMed  Google Scholar 

  171. WHO working group, Glucose-6-phosphate dehydrogenase deficiency. Bull. Wordl Heath Organ. 67, 601–611 (1989)

    Google Scholar 

  172. M.V. Relling, E.M. McDonagh, T. Chang, K.E. Caudle, H.L. McLeod, C.E. Haidar, T. Klein, L. Luzzatto, Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for rasburicase therapy in the context of G6PD deficiency genotype. Clin. Pharmacol. Ther. 96, 169–174 (2014)

    PubMed Central  CAS  PubMed  Google Scholar 

  173. A. Arora, E.M. Scholar, Role of tyrosine kinase inhibitors in cancer therapy. JPET 315, 971–979 (2005)

    CAS  Google Scholar 

  174. C.F. Spraggs, C.F. Xu, C.M. Hunt, Genetic characterization to improve interpretation and clinical management of hepatotoxicity caused by tyrosine kinase inhibitors. Pharmacogenomics 14, 541–554 (2013)

    CAS  PubMed  Google Scholar 

  175. E. Björnsson, Drug-induced liver injury: Hy’s rule revisited. Clin. Pharmacol. Ther. 79, 521–528 (2006)

    PubMed  Google Scholar 

  176. C.N. Sternberg, I.D. Davis, J. Mardiak, C. Szczylik, E. Lee, J. Wagstaff, C.H. Barrios, P. Salman, O.A. Gladkov, A. Kavina, J.J. Zarba, Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010)

    CAS  PubMed  Google Scholar 

  177. C.F. Xu, B.H. Reck, Z. Xue, L. Huang, K.L. Baker, M. Chen, E.P. Chen, H.E. Ellens, V.E. Mooser, L.R. Cardon, C.F. Spraggs, L. Pandite, Pazopanib-induced hyperbilirubinemia is associated with Gilbert’s syndrome UGT1A1 polymorphism. Br. J. Cancer 102, 1371–1377 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  178. R.J. Motzer, T. Johnson, T.K. Choueiri, K.C. Deen, Z. Xue, L. Pandite, C. Carpenter, C.F. Xu, Hyperbilirubinemia in pazopanib- or sunitinib-treated patients in COMPARZ is associated with UGT1A1 polymorphisms. Ann. Oncol. 24, 2927–2928 (2013)

    CAS  PubMed  Google Scholar 

  179. M. Abumiya, N. Takahashi, T. Niioka, Y. Kameoka, Regular article influence of UGT1A1 * 6, * 27, and * 28 polymorphisms on nilotinib-induced hyperbilirubinemia in Japanese patients with chronic myeloid leukemia. DMPK. Accepted for publication (2014)

  180. Y. Liu, J. Ramirez, L. House, M.J. Ratain, The UGT1A1*28 polymorphism correlates with erlontinib’s effect on SN-38 glucoronidation. Eur. J. Cancer 46, 2097–2103 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  181. B.M. Fukuoka, S. Yano, G. Giaccone, T. Tamura, K. Nakagawa, J. Douillard, Y. Nishiwaki, J. Vansteenkiste, S. Kudoh, D. Rischin, R. Eek, T. Horai, K. Noda, I. Takata, E. Smit, S. Averbuch, A. Macleod, A. Feyereislova, R. Dong, J. Baselga, Multi-Institutional Randomized Phase II Trial of Gefitinib for previously trated patients with advanced non small cell lung cancer. J. Clin. Oncol. 21, 2237–2246 (2003)

    CAS  PubMed  Google Scholar 

  182. H.C. Swaisland, M.V. Cantarini, R. Fuhr, A. Holt, Exploring the relationship between expression of cytochrome P450 enzymes and gefitinib pharmacokinetics. Clin. Pharmacokinet. 45, 633–644 (2006)

    CAS  PubMed  Google Scholar 

  183. T. Takimoto, T. Kijima, Y. Otani, S. Nonen, Y. Namba, M. Mori, S. Yokota, S. Minami, K. Komuta, J. Uchida, F. Imamura, M. Furukawa, N. Tsuruta, Y. Fujio, J. Azuma, I. Tachibana, A. Kumanogoh, Polymorphisms of CYP2D6 gene and gefitinib-induced hepatotoxicity. Clin. Lung Cancer 14, 502–507 (2013)

    CAS  PubMed  Google Scholar 

  184. C.E. Geyer, J. Forster, M. Sc, D. Lindquist, S. Chan, C.G. Romieu, T. Pienkowski, D. Ph, A. Jagiello-gruszfeld, J. Crown, A. Chan, B. Kaufman, D. Skarlos, M. Campone, N. Davidson, M. Berger, C. Oliva, S.D. Rubin, S. Stein, D. Cameron, Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 355, 2733–2743 (2006)

    CAS  PubMed  Google Scholar 

  185. E.J. Phillips, S.A. Mallal, Pharmacogenetics of drug hypersensitivity. Pharmacogenomics 11, 973–987 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  186. M. Bharadwaj, P. Illing, A. Theodossis, A.W. Purcell, J. Rossjohn, J. Mccluskey, Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Annu. Rev. Pharmacol. Toxicol. 52, 401–431 (2012)

    CAS  PubMed  Google Scholar 

  187. A.A. van der Veldt, K. Eechoute, H. Gelderblom, J. Gietema, H.J. Guchelaar, N.P. van Erp, A.J. van den Eertwegh, J.B. Haanen, R.H. Mathijssen, J.A. Wessels, Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin. Cancer Res. 17, 620–629 (2011)

    PubMed  Google Scholar 

  188. N.P. van Erp, K. Eechoute, A.A. van der Veldt, J.B. Haanen, A.K. Reyners, R.H. Mathijssen, E. Boven, T. van der Straaten, R.F. Baak-Pablo, J.A. Wessels, H.J. Guchelaar, H. Gelderblom, Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J. Clin. Oncol. 27, 4406–4412 (2009)

    PubMed  Google Scholar 

  189. H.M. Westgeest, N.P. van Erp, R.J. Honeywell, R. Hoekstra, G.J. Peters, H.M. Verheul, Successful treatment of renal cell carcinoma with sorafenib after effective but hepatotoxic sunitinib exposure. J. Clin. Oncol. 31, 83–86 (2013)

    Google Scholar 

  190. M.H. Diekstra, H.J. Klümpen, M.P. Lolkema, H. Yu, J.S. Kloth, H. Gelderblom, R.H. van Schaik, H. Gurney, J.J. Swen, A.D. Huitema, N. Steeghs, R.H. Mathijssen, Association analysis of genetic polymorphisms in genes related to sunitinib pharmacokinetics, specifically clearance of sunitinib and SU12662. Clin. Pharmacol. Ther. 96, 81–89 (2014)

    CAS  PubMed  Google Scholar 

  191. C.J. Peer, T.M. Sissung, A. Kim, L. Jain, S. Woo, E.R. Gardner, C.T. Kirkland, S.M. Troutman, B.C. English, E.D. Richardson, J. Federspiel, D. Venzon, W. Dahut, E. Kohn, S. Kummar, R. Yarchoan, G. Giaccone, B. Widemann, W.D. Figg, Sorafenib is an inhibitor of UGT1A1 but is metabolized by UGT1A9: implications of genetic variants on pharmacokinetics and hyperbilirubinemia. Clin. Cancer Res. 18, 2099–2107 (2012)

    CAS  PubMed  Google Scholar 

  192. J.H. Lee, Y.H. Chung, J.A. Kim, J.H. Shim, D. Lee, H.C. Lee, E.S. Shin, J.H. Yoon, B.I. Kim, S.H. Bae, K.C. Koh, N.H. Park, Genetic predisposition of hand-foot skin reaction after sorafenib therapy in patients with hepatocellular carcinoma. Cancer 119, 136–142 (2013)

    CAS  PubMed  Google Scholar 

  193. C. Davies, J. Godwin, R. Gray, M. Clarke, D. Cutter, S. Darby, P. McGale, H.C. Pan, C. Taylor, Y.C. Wang, M. Dowsett, J. Ingle, R. Peto, Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771–784 (2011)

    CAS  PubMed  Google Scholar 

  194. C. Davies, H. Pan, J. Godwin, R. Gray, R. Arriagada, V. Raina, M. Abraham, V.H. Medeiros Alencar, A. Badran, X. Bonfill, J. Bradbury, M. Clarke, R. Collins, S.R. Davis, A. Delmestri, J.F. Forbes, P. Haddad, M.F. Hou, M. Inbar, H. Khaled, J. Kielanowska, W.H. Kwan, B.S. Mathew, I. Mittra, B. Müller, A. Nicolucci, O. Peralta, F. Pernas, L. Petruzelka, T. Pienkowski, R. Radhika, B. Rajan, M.T. Rubach, S. Tort, G. Urrútia, M. Valentini, Y. Wang, R. Peto, Long-term effects of continuing adjuvant tamoxifen to 10 years versus stopping at 5 years after diagnosis of oestrogen receptor-positive breast cancer: ATLAS, a randomised trial. Lancet 381, 805–816 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  195. H.J. Burstein, S. Temin, H. Anderson, T.A. Buchholz, N.E. Davidson, K.E. Gelmon, S.H. Giordano, C.A. Hudis, D. Rowden, A.J. Solky, V. Stearns, E.P. Winer, J.J. Griggs, Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: american society of clinical oncology clinical practice guideline focused update. J. Clin. Oncol. 32, 2255–2270 (2014)

    PubMed  Google Scholar 

  196. S.A. Nazarali, S.A. Narod, Tamoxifen for women at high risk of breast cancer. Breast Cancer Targets Ther 6, 29–36 (2014)

    Google Scholar 

  197. J. Cuzick, I. Sestak, B. Bonanni, J.P. Costantino, S. Cummings, A. DeCensi, M. Dowsett, J.F. Forbes, L. Ford, A.Z. LaCroix, J. Mershon, B.H. Mitlak, T. Powles, U. Veronesi, V. Vogel, D.L. Wickerham, Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 381, 1827–1834 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  198. T.E. Mürdter, W. Schroth, L. Bacchus-Gerybadze, S. Winter, G. Heinkele, W. Simon, P.A. Fasching, T. Fehm, M. Eichelbaum, M. Schwab, H. Brauch, Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin. Pharmacol. Ther. 89, 708–717 (2011)

    PubMed  Google Scholar 

  199. C.M. Kelly, D.N. Juurlink, T. Gomes, M. Duong-Hua, K.I. Pritchard, P.C. Austin, L.F. Paszat, Selective serotonin reuptake inhibitors and breast cancer mortality in women receiving tamoxifen: a population based cohort study. BMJ (2010)

  200. A.H. Wu, W. Lorizio, S. Tchu, K. Lynch, R. Gerona, W. Ji, W. Ruan, K.J. Ruddy, S.D. Desantis, H.J. Burstein, E. Ziv, Estimation of tamoxifen metabolite concentrations in the blood of breast cancer patients through CYP2D6 genotype activity score. Breast Cancer Res. Treat. 133, 677–683 (2012)

    CAS  PubMed  Google Scholar 

  201. D.W. Lum, P. Perel, A.D. Hingorani, M.V. Holmes, CYP2D6 genotype and tamoxifen response for breast cancer: a systematic review and meta-analysis. PLoS One 8, e76648 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  202. M.P. Goetz, J.M. Rae, V.J. Suman, S.L. Safgren, M.M. Ames, D.W. Visscher, C. Reynolds, F.J. Couch, W.L. Lingle, D.A. Flockhart, Z. Desta, E.A. Perez, J.N. Ingle, Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J. Clin. Oncol. 23, 9312–9318 (2005)

    CAS  PubMed  Google Scholar 

  203. M.M. Regan, B. Leyland-Jones, M. Bouzyk, O. Pagani, W. Tang, R. Kammler, P. Dell’orto, M.O. Biasi, B. Thürlimann, M.B. Lyng, H.J. Ditzel, P. Neven, M. Debled, R. Maibach, K.N. Price, R.D. Gelber, A.S. Coates, A. Goldhirsch, J.M. Rae, G. Viale, CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1–98 trial. J. Natl. Cancer Inst. 104, 441–451 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  204. J.M. Rae, S. Drury, D.F. Hayes, V. Stearns, J.N. Thibert, B.P. Haynes, J. Salter, I. Sestak, J. Cuzick, M. Dowsett, CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J. Natl. Cancer Inst. 104, 452–460 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  205. C.M. Kelly, K.I. Pritchard, CYP2D6 genotype as a marker for benefit of adjuvant tamoxifen in postmenopausal women: lessons learned. J. Natl. Cancer Inst. 104, 427–428 (2012)

    CAS  PubMed  Google Scholar 

  206. H. Brauch, W. Schroth, M.P. Goetz, T.E. Mürdter, S. Winter, J.N. Ingle, M. Schwab, M. Eichelbaum, Tamoxifen use in postmenopausal breast cancer: CYP2D6 matters. J. Clin. Oncol. 31, 176–180 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  207. W. Schroth, M.P. Goetz, U. Hamann, P.A. Fasching, M. Schmidt, S. Winter, P. Fritz, W. Simon, V.J. Suman, M.M. Ames, S.L. Safgren, M.J. Kuffel, H.U. Ulmer, J. Boländer, R. Strick, M.W. Beckmann, H. Koelbl, R.M. Weinshilboum, J.N. Ingle, M. Eichelbaum, M. Schwab, H. Brauch, Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302, 1429–1436 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  208. L. Madlensky, L. Natarajan, S. Tchu, M. Pu, J. Mortimer, W. Flatt, D.M. Nikoloff, G. Hillman, M.R. Fontecha, H. Jeffrey, B.A. Parker, A.H. Wu, J.P. Pierce, Tamoxifen metabolites concentrations, CYP2D6 genotype and breast cancer outcomes. Clin. Pharmacol. Ther. 89, 718–725 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  209. H. Brauch, M. Schwab, Prediction of tamoxifen outcome by genetic variation of CYP2D6 in post-menopausal women with early breast cancer. Br. J. Clin. Pharmacol. 77, 695–703 (2014)

    CAS  PubMed  Google Scholar 

  210. M. Eisenstein, Personalized medicine: Special treatment. Nature 513, S8–S9 (2014)

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Miozzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pesenti, C., Gusella, M., Sirchia, S.M. et al. Germline oncopharmacogenetics, a promising field in cancer therapy. Cell Oncol. 38, 65–89 (2015). https://doi.org/10.1007/s13402-014-0214-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0214-4

Keywords

Navigation