Skip to main content
Log in

Short hairpin RNA-mediated down-regulation of CENP-A attenuates the aggressive phenotype of lung adenocarcinoma cells

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Deregulation of centromere protein (CENP)-A, a centromere-specific histone variant, has in the past been linked to cancer initiation and progression. Additionally, our previous work has shown that CENP-A upregulation predicts a poor overall survival in patients with lung adenocarcinoma. The aim of this study was to uncover the biological role of CENP-A in lung adenocarcinoma growth and invasion, including its underlying molecular mechanisms.

Methods

CENP-A expression was knocked down in human lung adenocarcinoma A549 and PC-9 cells using a short hairpin RNA (shRNA) technology. Subsequently, the effects of this knock down on the proliferation, apoptosis, cell cycle progression, colony formation, migration, invasion and tumorigenicity were assessed. Additionally, Western blot analyses were performed to examine concomitant expression changes in key proteins involved in cell cycle regulation and apoptosis.

Results

We found that shRNA-mediated knock down of CENP-A significantly inhibited the in vitro proliferation and colony formation of A549 and PC-9 cells as compared to control shRNA-transfected cells. In addition, CENP-A down-regulation was found to induce G0/G1 cell cycle arrest and apoptosis, and to inhibit the in vitro migration and invasion of A549 and PC-9 cells. Down-regulation of CENP-A was also found to significantly suppress the in vivo growth of xenografted A549 cells. At the protein level, we found that the expression of p21, p27, CHK2 and Bax was markedly increased and that the expression of CCNG1, Skp2, Cks1 and Bcl-2 was markedly decreased in CENP-A down-regulated cells.

Conclusion

Based on our results we conclude that down-regulation of CENP-A may attenuate the aggressive phenotype of lung adenocarcinoma cells. As such, CENP-A may serve as a promising therapeutic target for lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Jemal, F. Bray, M.M. Center, J. Ferlay, E. Ward, D. Forman, Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011)

    Article  PubMed  Google Scholar 

  2. A. Koren, H. Motaln, T. Cufer, Lung cancer stem cells: a biological and clinical perspective. Cell Oncol 36(4), 265–275 (2013)

  3. N. Peled, M.W. Wynes, N. Ikeda, T. Ohira, K. Yoshida, J. Qian, M. Ilouze, R. Brenner, Y. Kato, C. Mascaux, F.R. Hirsch, Insulin-like growth factor-1 receptor (IGF-1R) as a biomarker for resistance to the tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. Cell Oncol 36(4), 277–288 (2013)

  4. R.S. Herbst, J.V. Heymach, S.M. Lippman, Lung cancer. N. Engl. J. Med. 359, 1367–1380 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Y. Yatabe, A.C. Borczuk, C.A. Powell, Do all lung adenocarcinomas follow a stepwise progression? Lung Cancer 74, 7–11 (2011)

    Article  PubMed Central  PubMed  Google Scholar 

  6. V. De Rop, A. Padeganeh, P.S. Maddox, CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma 121, 527–538 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  7. P. Ulivi, R. Silvestrini, Role of quantitative and qualitative characteristics of free circulating DNA in the management of patients with non-small cell lung cancer. Cell Oncol 36(6), 439–448 (2013)

  8. T. Tomonaga, K. Matsushita, S. Yamaguchi, T. Oohashi, H. Shimada, T. Ochiai, K. Yoda, F. Nomura, Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63, 3511–3516 (2003)

    CAS  PubMed  Google Scholar 

  9. A. Amato, T. Schillaci, L. Lentini, A. Di Leonardo, CENPA overexpression promotes genome instability in pRb-depleted human cells. Mol. Cancer 8, 119 (2009)

    Article  PubMed Central  PubMed  Google Scholar 

  10. E.V. Howman, K.J. Fowler, A.J. Newson, S. Redward, A.C. MacDonald, P. Kalitsis, K.H. Choo, Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc. Natl. Acad. Sci. U. S. A. 97, 1148–1153 (2000)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Y. Li, Z. Zhu, S. Zhang, D. Yu, H. Yu, L. Liu, X. Cao, L. Wang, H. Gao, M. Zhu, ShRNA-targeted centromere protein a inhibits hepatocellular carcinoma growth. PLoS One 6, e17794 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Q. Wu, Y.M. Qian, X.L. Zhao, S.M. Wang, X.J. Feng, X.F. Chen, S.H. Zhang, Expression and prognostic significance of centromere protein a in human lung adenocarcinoma. Lung Cancer 77, 407–414 (2012)

    Article  PubMed  Google Scholar 

  13. S.H. Zhang, A.M. Xu, X.F. Chen, D.H. Li, M.P. Sun, Y.J. Wang, Clinicopathologic significance of mitotic arrest defective protein 2 overexpression in hepatocellular carcinoma. Hum. Pathol. 39, 1827–1834 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. Z. Zhu, Z. Luo, Y. Li, C. Ni, H. Li, M. Zhu, Human inhibitor of growth 1 inhibits hepatoma cell growth and influences p53 stability in a variant-dependent manner. Hepatol 49, 504–512 (2009)

    Article  CAS  Google Scholar 

  15. M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. X. Liu, L. Wang, S. Zhang, J. Lin, S. Zhang, M.A. Feitelson, H. Gao, M. Zhu, Mutations in the C-terminus of the X protein of hepatitis B virus regulate Wnt-5a expression in hepatoma Huh7 cells: cDNA microarray and proteomic analyses. Carcinog 29, 1207–1214 (2008)

    Article  Google Scholar 

  17. T. Tuschl, Expanding small RNA interference. Nat. Biotechnol. 20, 446–448 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. J. Bieniek, C. Childress, M.D. Swatski, W. Yang, COX-2 inhibitors arrest prostate cancer cell cycle progression by down-regulation of kinetochore/centromere proteins. Prostate 74, 999–1011 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. J.J. Qiu, J.J. Guo, T.J. Lv, H.Y. Jin, J.X. Ding, W.W. Feng, Y. Zhang, K.Q. Hua, Prognostic value of centromere protein-A expression in patients with epithelial ovarian cancer. Tumour Biol. 34(5), 2971–5 (2013)

    Article  CAS  PubMed  Google Scholar 

  20. S.L. McGovern, Y. Qi, L. Pusztai, W.F. Symmans, T.A. Buchholz, Centromere protein-A, an essential centromere protein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer. Breast Cancer Res. 14, R72 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  21. K. Maehara, K. Takahashi, S. Saitoh, CENP-A reduction induces a p53-dependent cellular senescence response to protect cells from executing defective mitoses. Mol. Cell. Biol. 30, 2090–2104 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. M.D. Blower, G.H. Karpen, The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3, 730–739 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. B.E. Black, L.E. Jansen, P.S. Maddox, D.R. Foltz, A.B.. Desai, J.V. Shah, D.W. Cleveland, Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol. Cell 25, 309–322 (2007)

  24. D.L. Bodor, L.P. Valente, J.F. Mata, B.E. Black, L.E. Jansen, Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol. Biol. Cell 24, 923–932 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. T. Tsukahara, S. Kawaguchi, T. Torigoe, S. Kimura, M. Murase, S. Ichimiya, T. Wada, M. Kaya, S. Nagoya, T. Ishii, S. Tatezaki, T. Yamashita, N. Sato, Prognostic impact and immunogenicity of a novel osteosarcoma antigen, papillomavirus binding factor, in patients with osteosarcoma. Cancer Sci. 99, 368–375 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. J.B. Old, S. Kratzat, A. Hoellein, S. Graf, J.A. Nilsson, L. Nilsson, K.I. Nakayama, C. Peschel, J.L. Cleveland, U.B. Keller, Skp2 directs Myc-mediated suppression of p27Kip1 yet has modest effects on Myc-driven lymphomagenesis. Mol. Cancer Res. 8, 353–362 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. D. Ganoth, G. Bornstein, T.K. Ko, B. Larsen, M. Tyers, M. Pagano, A. Hershko, The cell-cycle regulatory protein Cks1 is required for SCF (Skp2)-mediated ubiquitinylation of p27. Nat. Cell Biol. 3, 321–324 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. C.J. Sherr, J.M. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999)

    Article  CAS  PubMed  Google Scholar 

  29. N.H. Chehab, A. Malikzay, M. Appel, T.D. Halazonetis, Chk2/hCds1 functions as a DNA damage checkpoint in G (1) by stabilizing p53. Genes Dev. 14, 278–288 (2000)

    CAS  PubMed Central  PubMed  Google Scholar 

  30. P.E. Czabotar, G. Lessene, A. Strasser, J.M. Adams, Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Fund of Zhejiang Provincial Health Office (No.2013KYB217) to Qing Wu, and from “085” first-class discipline construction of science and technology innovation in Shanghai University of Traditional Chinese Medicine (No. 085ZY1220).

Competing interests

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wu or Shu-Hui Zhang.

Additional information

Qing Wu, Yong-Feng Chen and Jie Fu have contributed equally to this research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Measurement of the expression levels of CENP-A in A549 cells and non-malignant human lung epithelial cells (HBEC4 and LL 24). Real-time PCR analysis revealed a 6-8-fold over-expression of CENP-A in A549 cells compared to non-malignant human lung epithelial cells (HBEC4 and LL 24). (JPEG 507 kb)

Fig. S2

Effect of CENP-A silencing on expression of CENP-A in A549 cells. Compared to control shRNA-transfected cells, the delivery of CENP-A1 shRNA significantly reduced the mRNA and protein expression levels of CENP-A at 48 h after transfection. (JPEG 533 kb)

Fig. S3

The CENP-A expression level was comparable between CENP-A-silenced A549 lung adenocarcinoma cells and LL 24 normal lung epithelial cells. (JPEG 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Chen, YF., Fu, J. et al. Short hairpin RNA-mediated down-regulation of CENP-A attenuates the aggressive phenotype of lung adenocarcinoma cells. Cell Oncol. 37, 399–407 (2014). https://doi.org/10.1007/s13402-014-0199-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0199-z

Keywords

Navigation