Skip to main content

Advertisement

Log in

Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care

  • Review
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Introduction

Molecular imaging has been defined as the visualization, characterization and measurement of biological processes at the molecular and cellular level in humans and other living systems. In oncology it enables to visualize (part of) the functional behaviour of tumour cells, in contrast to anatomical imaging that focuses on the size and location of malignant lesions.

Available molecular imaging techniques include single photon emission computed tomography (SPECT), positron emission tomography (PET) and optical imaging. In PET, a radiotracer consisting of a positron emitting radionuclide attached to the biologically active molecule of interest is administrated to the patient.

Several approaches have been undertaken to use PET for the improvement of personalized cancer care. For example, a variety of radiolabelled ligands have been investigated for intratumoural target identification and radiolabelled drugs have been developed for direct visualization of the biodistibution in vivo, including intratumoural therapy uptake. First indications of the clinical value of PET for target identification and response prediction in oncology have been reported. This new imaging approach is rapidly developing, but uniformity of scanning processes, standardized methods for outcome evaluation and implementation in daily clinical practice are still in progress. In this review we discuss the available literature on molecular imaging with PET for personalized targeted treatment strategies.

Conclusion

Molecular imaging with radiolabelled targeted anticancer drugs has great potential for the improvement of personalized cancer care. The non-invasive quantification of drug accumulation in tumours and normal tissues provides understanding of the biodistribution in relation to therapeutic and toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U.S. Food and drug Administration, Hematology/oncology (cancer) approvals & safety notifications. (FDA 2013), http://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm279174.htm. Accessed 2 January 2014

  2. K.T. Flaherty, I. Puzanov, K.B. Kim et al., Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  3. D.A. Mankoff, A definition of molecular imaging. J. Nucl. Med. 48, 18N–21N (2007)

    PubMed  Google Scholar 

  4. P. Zanzonico, Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. Semin. Nucl. Med. 34, 87–111 (2004)

    PubMed  Google Scholar 

  5. G.A. van Dongen, M.J. Vosjan, Immuno-positron emission tomography, shedding light on clinical antibody therapy. Cancer Biother. Radiopharm. 25, 375–385 (2010)

    PubMed  Google Scholar 

  6. A. Rahmim, H. Zaidi, PET versus SPECT: strengths, limitations and challenges. Nucl. Med. Commun. 29, 193–207 (2008)

    PubMed  Google Scholar 

  7. R. Weissleder, M.K. Pittet, Imaging in the era of molecular oncology. Nature 452, 580–589 (2008)

    PubMed Central  CAS  PubMed  Google Scholar 

  8. D.W. Townsend, PET/CT today and tomorrow. J. Nucl. Med. 45(suppl), 4S–14S (2004)

    PubMed  Google Scholar 

  9. J.F. Bruzzi, S.G. Swisher, M.T. Truong et al., Detection of interval distant metastases: clinical utility of integrated CT-PET imaging in patients with esophageal carcinoma after neoadjuvant therapy. Cancer 109, 125–134 (2007)

    PubMed  Google Scholar 

  10. G.A. Silvestri, M.K. Gould, M.L. Margolis et al., Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 132, 178S–201S (2007)

    PubMed  Google Scholar 

  11. M.E. Juweid, S. Stroobants, O.S. Hoekstra et al., Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J. Clin. Oncol. 25, 571–578 (2007)

    PubMed  Google Scholar 

  12. M. Adejolu, L. Huo, E. Rohren et al., False-positive lesions mimicking breast cancer on FDG PET and PET/CT. AJR Am. J. Roentgenol. 198, W304–W314 (2012)

    PubMed  Google Scholar 

  13. M. Scheffler, C. Kobe, T. Zander et al., Monitoring reversible and irreversible EGFR inhibition with erlotinib and afatinib in a patient with EGFR-mutated non-small cell lung cancer (NSCLC) using sequential [18 F]fluorothymidine (FLT-)PET. Lung Cancer 77, 617–620 (2012)

    PubMed  Google Scholar 

  14. A.J. de Langen, M. Lubberink, R. Boellaard et al., Reproducibility of tumor perfusion measurements using 15O-labeled water and PET. J. Nucl. Med. 49, 1763–1768 (2008)

    PubMed  Google Scholar 

  15. F.G. Blankenberg, Imaging the molecular signatures of apoptosis and injury with radiolabeled annexin V. Proc. Am. Thorac. Soc. 6, 469–476 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  16. L.S. Mortensen, J. Johansen, J. Kallehauge et al., FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother. Oncol. 105, 14–20 (2012)

    PubMed  Google Scholar 

  17. L.M. Peterson, B.F. Kurland, E.K. Schubert, et al. A phase 2 study of 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC). Mol Imaging Biol. (2013)

  18. A. Verhagen, M. Studeny, G. Luurtsema et al., Metabolism of a [18F]fluorine labeled progestin (21-[18F]fluoro-16 alpha-ethyl-19-norprogesterone) in humans: a clue for future investigations. Nucl. Med. Biol. 21, 941–952 (1994)

    CAS  PubMed  Google Scholar 

  19. F. Dehdashti, J. Picus, J.M. Michalski et al., Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur. J. Nucl. Med. Mol. Imaging 32, 344–350 (2005)

    PubMed  Google Scholar 

  20. D.A. Mankoff, J.M. Link, H.M. Linden et al., Tumor receptor imaging. J. Nucl. Med. 49(suppl), 149S–163S (2008)

    CAS  PubMed  Google Scholar 

  21. M. van Kruchten, E.G. de Vries, E.F. de Vries et al., PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol. 14, e465–e475 (2013)

    PubMed  Google Scholar 

  22. F. Dehdashti, A.H. McGuire, H.F. van Brocklin et al., Assessment of 21-[18F]fluoro-16 alpha-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J. Nucl. Med. 32, 1532–1537 (1991)

    CAS  PubMed  Google Scholar 

  23. H.B. Zhou, J.H. Lee, C.G. Mayne et al., Imaging progesterone receptor in breast tumors: synthesis and receptor binding affinity of fluoroalkyl-substituted analogues of tanaproget. J. Med. Chem. 53, 3349–3360 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  24. S.M. Larson, M. Morris, I. Gunther et al., Tumor localization of 16beta-18F-fluoro-5alpha-dihydrotestosterone versus 18F-FDG in patients with progressive, metastatic prostate cancer. J. Nucl. Med. 45, 366–373 (2004)

    CAS  PubMed  Google Scholar 

  25. J.A. Ruizeveld de Winter, P.J. Janssen, H.M. Sleddens, Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am. J. Pathol. 144, 735–746 (1994)

    PubMed Central  CAS  PubMed  Google Scholar 

  26. I. Velikyan, A.L. Sundberg, O. Lindhe et al., Preparation and evaluation of 68Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J. Nucl. Med. 46, 1881–1888 (2005)

    CAS  PubMed  Google Scholar 

  27. W. Li, G. Niu, L. Lang et al., PET imaging of EGF receptors using [18F]FBEM-EGF in a head and neck squamous cell carcinoma model. Eur. J. Nucl. Med. Mol. Imaging 39, 300–308 (2012)

    PubMed Central  PubMed  Google Scholar 

  28. P.M. Smith-Jones, D.B. Solit, T. Akhurst et al., Imaging the pharmacodynamics of HER2 degradation in response to Hsp90 inhibitors. Nat. Biotechnol. 22, 701–706 (2004)

    CAS  PubMed  Google Scholar 

  29. Z. Miao, G. Ren, H. Liu et al., Small-animal PET imaging of human epidermal growth factor receptor positive tumor with a 64Cu labeled affibody protein. Bioconjug. Chem. 21, 947–954 (2010)

    CAS  PubMed  Google Scholar 

  30. Z. Miao, G. Ren, H. Liu et al., PET of EGFR expression with an 18F-labeled affibody molecule. J. Nucl. Med. 53, 1110–1118 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  31. C. Xavier, I. Vaneycken, M. D’huyvetter et al., Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 Nanobodies for iPET imaging of HER2 receptor expression in cancer. J. Nucl. Med. 54, 776–784 (2013)

    CAS  PubMed  Google Scholar 

  32. H. Gong, L. Sampath, J. L. Kovar et al, Targeting EGFR and HER2 for Molecular Imaging of Cancer, Molecular Imaging, Prof. Bernhard Schaller (ed.), ISBN: 978-953-51-0359-2]. InTech, Available from: http://www.intechopen.com/books/molecular-imaging/targeting-egfr-and-her2-for-molecular-imaging-of-cancer (2012)

  33. F. Teng, X. Meng, X. Sun et al., New strategy for monitoring targeted therapy: molecular imaging. Int. J. Nanomedicine 8, 3703–3713 (2013)

    PubMed Central  PubMed  Google Scholar 

  34. W. Cai, K. Chen, L. He et al., Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur. J. Nucl. Med. Mol. Imaging 34, 850–858 (2007)

    CAS  PubMed  Google Scholar 

  35. H.J. Aerts, L. Dubois, L. Perk et al., Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J. Nucl. Med. 50, 123–131 (2009)

    CAS  PubMed  Google Scholar 

  36. E.B. Corcoran, R.N. Hanson, Imaging EGFR and HER2 by PET and SPECT: a review. Med. Res. Rev. 34, 596–643 (2014)

    PubMed  Google Scholar 

  37. C.C. Wagner, O. Langer, Approaches using molecular imaging technology – use of PET in clinical microdose studies. Adv. Drug Deliv. Rev. 63, 539–546 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Office of new drugs in the Center for Drug Administration and Research (CDER). Guidance for industry, investigators and reviewers. (Food and Drug Administration 2006), http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm078933.pdf. Accessed 3 January 2014

  39. B. van den Bossche, C. van de Wiele, Receptor imaging in oncology by means of nuclear medicine: current status. J. Clin. Oncol. 22, 3593–3607 (2004)

    Google Scholar 

  40. P. Slobbe, A.J. Poot, A.D. Windhorst et al., PET imaging with small-molecule tyrosine kinase inhibitors: TKI-PET. Drug Discov. Today 17, 1175–1187 (2012)

    CAS  PubMed  Google Scholar 

  41. M.W. Brechbiel, Bifunctional chelates for metal nuclides. Q. J. Nucl. Mol. Imaging. 52, 166–173 (2008)

    CAS  Google Scholar 

  42. A.B. Riemer, M. Klinger, S. Wagner, Generation of Peptide mimics of the epitope recognized by trastuzumab on the oncogenic protein Her-2/neu. J. Immunol. 173, 394–401 (2004)

  43. G.A. van Dongen, G.W. Visser, M.N. Lub-de Hooge et al., Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist 12, 1379–1389 (2007)

    PubMed  Google Scholar 

  44. A.A. Memon, S. Jakobsen, F. Dagnaes-Hansen et al., Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: a micro-PET study on mice with lung tumor xenografts. Cancer Res. 69, 873–878 (2009)

    CAS  PubMed  Google Scholar 

  45. A.J. Poot, B. van der Wildt, M. Stigter-van Walsum et al., [11C]Sorafenib: radiosynthesis and preclinical evaluation in tumor-bearing mice of a new TKI-PET tracer. Nucl. Med. Biol. 40, 488–497 (2013)

    CAS  PubMed  Google Scholar 

  46. H. Su, Y. Seimbille, G.Z. Ferl et al., Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur. J. Nucl. Med. Mol. Imaging 35, 1089–1099 (2008)

    CAS  PubMed  Google Scholar 

  47. Y. Seimbille, F. Bénard, J. Rousseau et al., Impact on estrogen receptor binding and target tissue uptake of [18F]fluorine substitution at the 16alpha-position of fulvestrant (faslodex; ICI 182,780). Nucl. Med. Biol. 31, 691–698 (2004)

    CAS  PubMed  Google Scholar 

  48. D. Yang, L.R. Kuang, A. Cherif et al., Synthesis of [18F]fluoroalanine and [18F]fluorotamoxifen for imaging breast tumors. J. Drug Target. 1, 259–267 (1993)

    CAS  PubMed  Google Scholar 

  49. A.A. van der Veldt, E.F. Smit, A.A. Lammertsma, Positron emission tomography as a method for measuring drug delivery to tumors in vivo: the example of [11C]docetaxel. Front Oncol. 13, 103389 (2013)

    Google Scholar 

  50. A.A. Lammertsma, C.J. Bench, S.P. Hume et al., Comparison of methods for analysis of clinical [11C]raclopride studies. J. Cereb. Blood Flow Metab. 16, 42–52 (1996)

    CAS  PubMed  Google Scholar 

  51. R.N. Gunn, S.R. Gunn, V.J. Cunningham, Positron emission tomography compartmental models. J. Cereb. Blood Flow Metab. 21, 635–652 (2001)

    CAS  PubMed  Google Scholar 

  52. A.A. Lammertsma, in Vivo imaging of cancer therapy, ed. by A.F. Shields, P. Price (Humana Press, New Jersey, 2007), pp. 155–167

    Google Scholar 

  53. M. Yaqub, R. Boellaard, M.A. Kropholler et al., Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys. Med. Biol. 51, 4217–4232 (2006)

    PubMed  Google Scholar 

  54. K.S. Gleisner, M. Nickel, O. Lindén et al., Parametric images of antibody pharmacokinetics based on serial quantitative whole-body imaging and blood sampling. J. Nucl. Med. 48, 1369–1378 (2007)

    PubMed  Google Scholar 

  55. M.C. Adams, T.G. Turkington, J.M. Wilson et al., A systematic review of the factors affecting accuracy of SUV measurements. AJR Am. J. Roentgenol. 195, 310–320 (2010)

    PubMed  Google Scholar 

  56. I. Bahce, E.F. Smit, M. Lubberink et al., Development of [11C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status. Clin. Cancer Res. 19, 183–193 (2013)

    CAS  PubMed  Google Scholar 

  57. M. Bergström, A. Grahnén, B. Langström, Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur. J. Clin. Pharmacol. 59, 357–366 (2003)

    PubMed  Google Scholar 

  58. A. Saleem, G. Searle, L.M. Kenny et al., Brain and tumor penetration of carbon-11-labeled lapatinib in patients with HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 31(suppl 15), 635 (2013)

    Google Scholar 

  59. A.J. Fischman, A.A. Bonab, R.H. Rubin, Regional pharmacokinetics of orally administered PET tracers. Curr. Pharm. Des. 6, 1625–1629 (2000)

    CAS  PubMed  Google Scholar 

  60. J.E. Mortimer, F. Dehdashti, B.A. Siegel et al., Metabolic flare: indicator of hormone responsiveness in advanced breast cancer. J. Clin. Oncol. 19, 2797–2803 (2001)

    CAS  PubMed  Google Scholar 

  61. F. Dehdashti, J.E. Mortimer, K. Trinkaus et al., PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res. Treat. 113, 509–517 (2009)

    CAS  PubMed  Google Scholar 

  62. C. Liedtke, K. Broglio, S. Moulder et al., Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann. Oncol. 20, 1953–1958 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  63. E. Amir, M. Clemons, C.A. Purdie, Tissue confirmation of disease recurrence in breast cancer patients: pooled analysis of multi-centre, multi-disciplinary prospective studies. Cancer Treat. Rev. 38, 708–714 (2012)

    PubMed  Google Scholar 

  64. T. Foukakis, G. Astrom, L. Lindstrom et al., When to order a biopsy to characterise a metastatic relapse in breast cancer. Ann. Oncol. 23(suppl 10), x349–x353 (2012)

    PubMed  Google Scholar 

  65. K. Tamura, H. Kurihara, K. Yonemori et al., 64Cu-DOTA-trastuzumab PET imaging in patients with HER2-positive breast cancer. J. Nucl. Med. 51, 1869–1875 (2013)

    Google Scholar 

  66. J.E. Mortimer, J.R. Bading, D.M. Colcher et al., Functional imaging of human epidermal growth factor receptor 2-positive metastatic breast cancer using 64Cu-DOTA-trastuzumab PET. J. Nucl. Med. 55, 23–29 (2014)

    PubMed Central  CAS  PubMed  Google Scholar 

  67. E.C. Dijkers, T.H. Oude Munnink, J.G. Kosterink et al., Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 87, 586–592 (2010)

    CAS  PubMed  Google Scholar 

  68. E.C. Gootjes, M.C. Huisman, D. Vughts, et al., [89Zr] labeled cetuximab PET imaging in advanced colorectal cancer patients: a feasibility study. Abstract O3.6 of the 12th international congress on targeted anticancer therapies 2014. http://www.tatcongress.org/previous-tatcongresses/tat-2014/download-abstracts/. Accessed 18 April 2014

  69. S.B. Gaykema, A.H. Brouwers, M.N. Lub-de Hooge et al., 89Zr-bevacizumab PET imaging in primary breast cancer. J. Nucl. Med. 54, 1014–1018 (2013)

    CAS  PubMed  Google Scholar 

  70. A.A. van der Veldt, G. Luurtsema, M. Lubberink et al., Individualized treatment planning in oncology: role of PET and radiolabelled anticancer drugs in predicting tumour resistance. Curr. Pharm. Des. 14, 2914–2931 (2008)

    PubMed  Google Scholar 

  71. R. Sharma, R, E. Aboagye. Development of radiotracers for oncology–the interface with pharmacology. Br. J. Pharmacol. 163, 1565–1585 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  72. A.A. van der Veldt, M. Lubberink, R.H. Mathijssen et al., Toward prediction of efficacy of chemotherapy: a proof of concept study in lung cancer patients using [11C]docetaxel and positron emission tomography. Clin. Cancer Res. 19, 4163–4173 (2013)

    PubMed  Google Scholar 

  73. M. Moehler, A. Dimitrakopoulou-Strauss, F. Gutzler et al., 18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil. Cancer 83, 245–253 (1998)

    CAS  PubMed  Google Scholar 

  74. T. Inoue, E.E. Kim, S. Wallace et al., Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study. Cancer Biother. Radiopharm. 11, 235–245 (1996)

    CAS  PubMed  Google Scholar 

  75. N. Godin-Heymann, L. Ulkus, B.W. Brannigan et al., The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol. Cancer Ther. 7, 874–879 (2008)

    CAS  PubMed  Google Scholar 

  76. A.A. Memon, B. Weber, M. Winterdahl et al., PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. Br. J. Cancer 105, 1850–1855 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Y.Y. Janjigian, N. Viola-Villegas, J.P. Holland et al., Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-trastuzumab PET. J. Nucl. Med. 54, 936–943 (2013)

    CAS  PubMed  Google Scholar 

  78. Y. Miyata, H. Nakamoto, L. Neckers, The therapeutic target Hsp90 and cancer hallmarks. Curr. Pharm. Des. 19, 347–365 (2013)

    CAS  PubMed  Google Scholar 

  79. G. Niu, W. Cai, K. Chen et al., Non-invasive PET imaging of EGFR degradation induced by a heat shock protein 90 inhibitor. Mol. Imaging Biol. 10, 99–106 (2008)

    PubMed  Google Scholar 

  80. G. Niu, Z. Li, Q. Cao et al., Monitoring therapeutic response of human ovarian cancer to 17-DMAG by noninvasive PET imaging with (64)Cu-DOTA-trastuzumab. Eur. J. Nucl. Med. Mol. Imaging 36, 1510–1519 (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  81. T.H. Oude Munnink, M.A. Korte, W.B. Nagengast et al., (89)Zr-trastuzumab PET visualises HER2 downregulation by the HSP90 inhibitor NVP-AUY922 in a human tumour xenograft. Eur. J. Cancer 46, 678–684 (2010)

    CAS  PubMed  Google Scholar 

  82. W.B. Nagengast, M.A. de Korte, T.H. Oude Munnink et al., 89Zr-bevacizumab PET of early antiangiogenic tumor response to treatment with HSP90 inhibitor NVP-AUY922. J. Nucl. Med. 51, 761–767 (2010)

    CAS  PubMed  Google Scholar 

  83. A.J. Chang, R. Sohn, Z. Hong Lu et al., Detection of rapalog-mediated therapeutic response in renal cancer xenogrefts using 64Cu-bevacizumab immunoPET. PLoS One 8, 101371 (2013)

    Google Scholar 

  84. A.R. van der Bilt, A.G. Terwisscha van Scheltinga, H. Timmer-Bosscha et al., Measurement of tumor VEGF-A levels with 89Zr-bevacizumab PET as an early biomarker for the antiangiogenic effect of everolimus treatment in an ovarian cancer xenograft model. Clin. Cancer Res. 18, 6306–6314 (2012)

    PubMed  Google Scholar 

  85. S. Oosting, A.H. Brouwers, S.C. van Es et al., 89Zr-bevacizumab PET imaging in metastatic renal cell carcinoma patients before and during antiangiogenic treatment. J. Clin. Oncol. 30(suppl 15), 10581 (2012)

    Google Scholar 

  86. J. Tol, M. Koopman, A. Cats et al., Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med. 360, 563–572 (2009)

    CAS  PubMed  Google Scholar 

  87. J.R. Hecht, E. Mitchell, T. Chidiac et al., A randomized phase IIIB trial of chemotherapy, bevacizumab and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J. Clin. Oncol. 27, 672–680 (2009)

    CAS  PubMed  Google Scholar 

  88. M. Arjaans, T.H. Oude Munnink, S.F. Oosting et al., Bevacizumab-induced normalization of blood vessels in tumors hampers antibody uptake. Cancer Res. 73, 3347–3355 (2013)

    CAS  PubMed  Google Scholar 

  89. M.H. Zissen, P. Kunz, M. Subbarayan et al., 18F-5-fluorouracil dynamic positron emission tomography/computed tomography shows decreased tracer activity after bevacizumab in colorectal metastases. Nucl. Med. Commun. 32, 343–347 (2011)

    CAS  PubMed  Google Scholar 

  90. A.A.M. van der Veldt, M. Lubberink, I. Bahce et al., Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell 21, 82–91 (2012)

    PubMed  Google Scholar 

  91. R.J.A. Harte, J.C. Matthews, S.M. O’Reilly et al., Tumor, normal tissue, and plasma pharmacokinetic studies of fluorouracil biomodulation with n-phosphonacetyl-l-aspartate, folinic acid, and interferon Alfa. J. Clin. Oncol. 17, 1580–1588 (1999)

    CAS  PubMed  Google Scholar 

  92. W. Löscher, H. Potschka, Drug resistance in brain diseases and the role of drug efflux transporters. Nat. Rev. Neurosci. 6, 591–602 (2005)

    PubMed  Google Scholar 

  93. V.S. Narang, C. Fraga, N. Kumar et al., Dexamethasone increases expression and activity of multidrug resistance transporters at the rat blood–brain barrier. Am. J. Physiol. Cell Physiol. 295, C440–C450 (2008)

    PubMed Central  CAS  PubMed  Google Scholar 

  94. M.S. Gordon, K. Margolin, M. Talpaz et al., Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol. 19, 843–818 (2001)

    CAS  PubMed  Google Scholar 

  95. B. Leyland-Jones, Dose scheduling: herceptin. Oncology 61(suppl 2), 31–36 (2001)

    CAS  PubMed  Google Scholar 

  96. J. Baselga, D. Pfister, M.R. Cooper et al., Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J. Clin. Oncol. 18, 904–914 (2000)

    CAS  PubMed  Google Scholar 

  97. L.R. Perk, O.J. Visser, M. Stigter-van Walsum et al., Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 33, 1337–1345 (2006)

    CAS  PubMed  Google Scholar 

  98. S.N. Rizvi, O.J. Visser, M.J. Vosjan et al., Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur. J. Nucl. Med. Mol. Imaging 39, 512–520 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  99. K. Taniguchi, J. Okami, K. Kodama et al., Intratumor heterogeneity of epidermal growth factor receptor mutations in lung cancer and its correlation to the response to gefitinib. Cancer Sci. 99, 929–935 (2008)

    CAS  PubMed  Google Scholar 

  100. S. Artale, A. Sartore-Bianchi, S.M. Veronese et al., Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J. Clin. Oncol. 26, 4217–4219 (2008)

    PubMed  Google Scholar 

  101. G. Curigliano, V. Bagnardi, G. Viale et al., Should liver metastases of breast cancer be biopsied to improve treatment choice? Ann. Oncol. 22, 2227–2233 (2011)

    CAS  PubMed  Google Scholar 

  102. R. Boellaard, M.J. O’Doherty, W.A. Weber et al., FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur. J. Nucl. Med. Mol. Imaging 37, 181–200 (2010)

    PubMed Central  PubMed  Google Scholar 

  103. R.L. Wahl, H. Jacene, Y. Kasamon et al., From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 50(Suppl 1), 122S–150S (2009)

    PubMed Central  CAS  PubMed  Google Scholar 

  104. S.J. O'Day, O. Hamid, W.J. Urba, Targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4): a novel strategy for the treatment of melanoma and other malignancies. Cancer 110, 2614–2627 (2007)

    PubMed  Google Scholar 

  105. D.J. Yang, C. Li, L.R. Kuang et al., Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci. 55, 53–67 (1994)

    CAS  PubMed  Google Scholar 

  106. J.R. Petrulli, J.M. Sullivan, M.Q. Zheng et al., Quantitative analysis of [(11)C]-Erlotinib PET demonstrates specific binding for activating mutations of the EGFR kinase domain. Neoplasia 15, 1347–1353 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  107. M.R. Zhang, K. Kumata, A. Hatori et al., [11C]Gefitinib ([11c]Iressa): radiosynthesis, in vitro uptake, and in vivo imaging of intact murine fibrosarcoma. Mol. Imaging Biol. 12, 181–191 (2010)

    PubMed  Google Scholar 

  108. K. Kawamura, T. Yamasaki, J. Yui et al., In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [(11)C]gefitinib. Nucl. Med. Biol. 36, 239–246 (2009)

    CAS  PubMed  Google Scholar 

  109. K.E. Kil, Y.S. Ding, K.S. Lin et al., Synthesis and positron emission tomography studies of carbon-11-labeled imatinib (Gleevec). Nucl. Med. Biol. 34, 153–163 (2007)

    PubMed Central  CAS  PubMed  Google Scholar 

  110. F. Basuli, H. Wu, C. Li et al., A first synthesis of 18F-radiolabeled lapatinib: a potential tracer for positron emission tomographic imaging of ErbB1/ErbB2 tyrosine kinase activity. J. Label. Compd. Radiopharm. 54, 633–636 (2011)

    CAS  Google Scholar 

  111. C. Asakawa, M. Ogawa, K. Kumata et al., [11C]sorafenib: radiosynthesis and preliminary PET study of brain uptake in P-gp/Bcrp knockout mice. Bioorg. Med. Chem. Lett. 21, 2220–2223 (2011)

    CAS  PubMed  Google Scholar 

  112. J.Q. Wang, K.D. Miller, G.W. Sledge et al., Synthesis of [18F]SU11248, a new potential PET tracer for imaging cancer tyrosine kinase. Bioorg. Med. Chem. Lett. 15, 4380–4384 (2005)

    CAS  PubMed  Google Scholar 

  113. M. Gao, C.M. Lola, M. Wang et al., Radiosynthesis of [11C]Vandetanib and [11C]chloro-Vandetanib as new potential PET agents for imaging of VEGFR in cancer. Bioorg. Med. Chem. Lett. 21, 3222–3226 (2011)

    CAS  PubMed  Google Scholar 

  114. B. Paudyal, P. Paudyal, N. Oriuchi et al., Positron emission tomography imaging and biodistribution of vascular endothelial growth factor with 64Cu-labeled bevacizumab in colorectal cancer xenografts. Cancer Sci. 102, 117–121 (2011)

    CAS  PubMed  Google Scholar 

  115. T.K. Nayak, K. Garmestani, K.E. Baidoo et al., PET imaging of tumor angiogenesis in mice with VEGF-A-targeted (86)Y-CHX-A″-DTPA-bevacizumab. Int. J. Cancer 128, 920–926 (2011)

    PubMed Central  CAS  PubMed  Google Scholar 

  116. W.B. Nagengast, E.G. de Vries, G.A. Hospers et al., In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J. Nucl. Med. 48, 1313–1319 (2007)

    CAS  PubMed  Google Scholar 

  117. W. Ping Li, L.A. Meyer, D.A. Capretto et al., Receptor-binding, biodistribution, and metabolism studies of 64Cu-DOTA-cetuximab, a PET-imaging agent for epidermal growth-factor receptor-positive tumors. Cancer Biother. Radiopharm. 23, 158–171 (2008)

    PubMed  Google Scholar 

  118. M. Eiblmaier, L.A. Meyer, M.A. Watson et al., Correlating EGFR expression with receptor-binding properties and internalization of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines. J. Nucl. Med. 49, 1472–1479 (2008)

    PubMed Central  CAS  PubMed  Google Scholar 

  119. G. Niu, X. Sun, Q. Cao et al., Cetuximab-based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin. Cancer Res. 16, 2095–2105 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  120. A. Achmad, H. Hanaoka, H. Yoshioka et al., Predicting cetuximab accumulation in KRAS wild-type and KRAS mutant colorectal cancer using 64Cu-labeled cetuximab positron emission tomography. Cancer Sci. 103, 600–605 (2012)

    CAS  PubMed  Google Scholar 

  121. T.K. Nayak, C.A. Regino, K.J. Wong et al., PET imaging of HER1-expressing xenografts in mice with 86Y-CHX-A''-DTPA-cetuximab. Eur. J. Nucl. Med. Mol. Imaging 37, 1368–1376 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  122. T.K. Nayak, K. Garmestani, D.E. Milenic et al., HER1-targeted 86Y-panitumumab possesses superior targeting characteristics than 86Y-cetuximab for PET imaging of human malignant mesothelioma tumors xenografts. PLoS One 25, 101371 (2011)

    Google Scholar 

  123. L.R. Perk, G.W. Visser, M.J. Vosjan et al., (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J. Nucl. Med. 46, 1898–1906 (2005)

    CAS  PubMed  Google Scholar 

  124. G. Niu, Z. Li, J. Xie et al., PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J. Nucl. Med. 50, 1116–1123 (2009)

    CAS  PubMed  Google Scholar 

  125. T.K. Nayak, K. Garmestani, K.E. Baidoo et al., Preparation, biological evaluation, and pharmacokinetics of the human anti-HER1 monoclonal antibody panitumumab labeled with 86Y for quantitative PET of carcinoma. J. Nucl. Med. 51, 942–950 (2010)

    PubMed Central  CAS  PubMed  Google Scholar 

  126. T.K. Nayak, K. Garmestani, D.E. Milenic et al., PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. J. Nucl. Med. 53, 113–120 (2012)

    PubMed Central  CAS  PubMed  Google Scholar 

  127. A.J. Chang, R.A. De Silva, S.E. Lapi, PET and MRI of metastatic peritoneal and pulmonary colorectal cancer in mice with human epidermal growth factor receptor 1-targeted 89Zr-labeled panitumumab. Mol. Imaging 12, 17–27 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  128. S. Bhattacharyya, K. Kurdziel, L. Wei et al., Zirconium-89 labeled panitumumab: a potential immuno-PET probe for HER1-expressing carcinomas. Nucl. Med. Biol. 40, 451–457 (2013)

    PubMed Central  CAS  PubMed  Google Scholar 

  129. A. Natarajan, G. Gowrishankar, C.H. Nielsen et al., Positron emission tomography of 64Cu-DOTA-Rituximab in a transgenic mouse model expressing human CD20 for clinical translation to image NHL. Mol. Imaging Biol. 14, 608–616 (2012)

    PubMed  Google Scholar 

  130. A. Natarajan, F. Habte, H. Liu et al., Evaluation of 89Zr-rituximab tracer by Cerenkov luminescence imaging and correlation with PET in a humanized transgenic mouse model to image NHL. Mol. Imaging Biol. 15, 468–475 (2013)

    PubMed  Google Scholar 

  131. E. Mume, A. Orlova, P.U. Malmström et al., Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nucl. Med. Biol. 32, 613–622 (2005)

    CAS  PubMed  Google Scholar 

  132. E.C. Dijkers, J.G. Kosterink, A.P. Rademaker et al., Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J. Nucl. Med. 50, 974–981 (2009)

    CAS  PubMed  Google Scholar 

  133. A.J. Chang, R. Desilva, S. Jain et al., 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors. Pharm. (Basel). 5, 79–93 (2012)

    Google Scholar 

Download references

Acknowlegdments

We sincerely thank Erik van Helden, Elske Gootjes and Otto Hoekstra for providing the [89Zr]cetuximab PET images used in Fig. 4 as well as Geke Hospers and Idris Bahce for permission to reproduce Figs. 3 and 5, respectively.

Conflicts of interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Willemien Menke-van der Houven van Oordt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mammatas, L.H., Verheul, H.M.W., Hendrikse, N.H. et al. Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care. Cell Oncol. 38, 49–64 (2015). https://doi.org/10.1007/s13402-014-0194-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0194-4

Keywords

Navigation