Skip to main content

Advertisement

Log in

Translational suppression of HIF-1α by miconazole through the mTOR signaling pathway

  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Miconazole is an imidazole antifungal agent that has amply been used in the treatment of superficial mycosis. Preliminary data indicate that miconazole may also induce anticancer effects. As yet, however, little is known about the therapeutic efficacy of miconazole on cancer and the putative mechanism(s) involved. Here, we show that miconazole suppresses hypoxia inducible factor-1α (HIF-1α) protein translation in different cancer-derived cells.

Methods

The effect of miconazole on HIF-1α expression was examined by Western blotting and reverse transcriptase polymerase chain reaction assays in human U87MG and MCF-7 glioma and breast cancer-derived cell lines, respectively. The transcriptional activity of the HIF-1 complex was confirmed using a luciferase assay. To assess whether angiogenic factors are increased under hypoxic conditions in these cells, vascular endothelial growth factor (VEGF) levels were measured by ELISA. Metabolic labeling was performed to examine HIF-1α protein translation and global protein synthesis. The role of the mammalian target of rapamycin (mTOR) signaling pathway was examined to determine translation regulation of HIF-1α after miconazole treatment.

Results

Miconazole was found to suppress HIF-1α protein expression through post-transcriptional regulation in U87MG and MCF-7 cells. The suppressive effect of HIF-1α protein synthesis was found to be due to inhibition of mTOR. Miconazole significantly inhibited the transcriptional activity of the HIF-1 complex and the expression of its target VEGF. Moreover, miconazole was found to suppress global protein synthesis by inducing phosphorylation of the translation initiation factor 2α (eIF2α).

Conclusion

Our data indicate that miconazole plays a role in translational suppression of HIF-1α. We suggest that miconazole may represent a novel therapeutic option for the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.J. Lou, Y.L. Chua, E.H. Chew, J. Gao, M. Bushell, T. Hagen, Inhibition of hypoxia-inducible factor-1 alpha (HIF-1alpha) protein synthesis by DNA damage inducing agents. PLoS One 5, e10522 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  2. A.J. Majmundar, W.J. Wong, M.C. Simon, Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. G.L. Semenza, Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003)

    Article  CAS  PubMed  Google Scholar 

  4. W.G. Kaelin Jr., The von Hippel-Lindau tumour suppressor protein: O2sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. N. Masson, C. Willam, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe, Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20, 5197–5206 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. D.J. Manalo, A. Rowan, T. Lavoie, L. Natarajan, B.D. Kelly, S.Q. Ye, J.G. Garcia, G.L. Semenza, Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105, 659–669 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. C.D. Young, A.S. Lewis, M.C. Rudolph, M.D. Ruehle, M.R. Jackman, U.J. Yun, O. Ilkun, R. Pereira, E.D. Abel, S.M. Anderson, Modulation of glucose transporter 1 (GLUT1) expression levels alters mouse mammary tumor cell growth in vitro and in vivo. PLoS One 6, e23205 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. N. Shaida, R. Launchbury, J.L. Boddy, C. Jones, L. Campo, H. Turley, S. Kanga, A.H. Banham, P.R. Malone, A.L. Harris, S.B. Fox, Expression of BNIP3 correlates with hypoxia-inducible factor (HIF)-1alpha, HIF-2alpha and the androgen receptor in prostate cancer and is regulated directly by hypoxia but not androgens in cell lines. Prostate 68, 336–343 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. H. Bando, T. Atsumi, T. Nishio, H. Niwa, S. Mishima, C. Shimizu, N. Yoshioka, R. Bucala, T. Koike, Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11, 5784–5792 (2005)

    Article  CAS  PubMed  Google Scholar 

  10. G.E. Piérard, T. Hermanns-Lê, P. Delvenne, C. Piérard-Franchimont, Miconazole, a pharmacological barrier to skin fungal infections. Expert. Opin. Pharmacother. 13, 1187–1194 (2012)

    Article  PubMed  Google Scholar 

  11. H.T. Chang, W.C. Chen, J.S. Chen, Y.C. Lu, S.S. Hsu, J.L. Wang, H.H. Cheng, J.S. Cheng, B.P. Jiann, A.J. Chiang, J.K. Huang, C.R. Jan, Effect of miconazole on intracellular Ca2+ levels and proliferation in human osteosarcoma cells. Life Sci. 76, 2091–2101 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. D. Zagorac, D. Jakovcevic, D. Gebremedhin, D.R. Harder, Antiangiogenic effect of inhibitors of cytochrome P450 on rats with glioblastoma multiforme. J. Cereb. Blood Flow Metab. 28, 1431–1439 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. C.H. Wu, J.H. Jeng, Y.J. Wang, C.J. Tseng, Y.C. Liang, C.H. Chen, H.M. Lee, J.K. Lin, C.H. Lin, S.Y. Lin, C.P. Li, Y.S. Ho, Antitumor effects of miconazole on human colon carcinoma xenografts in nude mice through induction of apoptosis and G0/G1 cell cycle arrest. Toxicol. Appl. Pharmacol. 180, 22–35 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. M. Bi, C. Naczki, M. Koritzinsky, D. Fels, J. Blais, N. Hu, H. Harding, I. Novoa, M. Varia, J. Raleigh, D. Scheuner, R.J. Kaufman, J. Bell, D. Ron, B.G. Wouters, C. Koumenis, ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J. 24, 3470–3481 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. H.J. Jung, S.I. Suh, M.H. Suh, W.K. Baek, J.W. Park, Pentamidine reduces expression of hypoxia-inducible factor-1α in DU145 and MDA-MB-231 cancer cells. Cancer Lett. 303, 39–46 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. A. Rapisarda, B. Uranchimeg, D.A. Scudiero, M. Selby, E.A. Sausville, R.H. Shoemaker, G. Melillo, Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res. 62, 4316–4324 (2002)

    CAS  PubMed  Google Scholar 

  17. K.L. Talks, H. Turley, K.C. Gatter, P.H. Maxwell, C.W. Pugh, P.J. Ratcliffe, A.L. Harris, The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157, 411–421 (2000)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. J. Du, R. Xu, Z. Hu, Y. Tian, Y. Zhu, L. Gu, L. Zhou, PI3K and ERK-induced Rac1 activation mediates hypoxia-induced HIF-1α expression in MCF-7 breast cancer cells. PLoS One 6, e25213 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. C. Ercan, J.F. Vermeulen, L. Hoefnagel, P. Bult, P. van der Groep, E. van der Wall, P.J. van Diest, HIF-1α and NOTCH signaling in ductal and lobular carcinomas of the breast. Cell. Oncol. 35, 435–442 (2012)

    Article  CAS  Google Scholar 

  20. M. Yee Koh, T.R. Spivak-Kroizman, G. Powis, HIF-1 regulation: not so easy come, easy go. Trends Biochem. Sci. 33, 526–534 (2008)

    Article  PubMed  Google Scholar 

  21. D.B. Shackelford, D.S. Vasquez, J. Corbeil, S. Wu, M. Leblanc, C.L. Wu, D.R. Vera, R.J. Shaw, mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc. Natl. Acad. Sci. U. S. A. 106, 11137–11142 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. D.C. Fingar, C.J. Richardson, A.R. Tee, L. Cheatham, C. Tsou, J. Blenis, mTOR controls cell cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation initiation factor 4E. Mol. Cell. Biol. 24, 200–216 (2004)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. F.H. Pham, P.H. Sugden, A. Clerk, Regulation of protein kinase B and 4E-BP1 by oxidative stress in cardiac myocytes. Circ. Res. 86, 1252–1258 (2000)

    Article  CAS  PubMed  Google Scholar 

  24. R.C. Wek, H.Y. Jiang, T.G. Anthony, Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7–11 (2006)

    Article  CAS  PubMed  Google Scholar 

  25. A.D. Rodrigues, D.F. Lewis, C. Ioannides, D.V. Parke, Spectral and kinetic studies of the interaction of imidazole anti-fungal agents with microsomal cytochromes P-450. Xenobiotica 17, 1315–1327 (1987)

    Article  CAS  PubMed  Google Scholar 

  26. M.R. Moody, V.M. Young, M.J. Morris, S.C. Schimpff, In vitro activities of miconazole, miconazole nitrate, and ketoconazole alone and combined with rifampin against Candida spp. and Torulopsis glabrata recovered from cancer patients. Antimicrob. Agents Chemother. 17, 871–875 (1980)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. W.M. Jordan, G.P. Bodey, V. Rodriguez, S.J. Ketchel, J. Henney, Miconazole therapy for treatment of fungal infections in cancer patients. Antimicrob. Agents Chemother. 16, 792–797 (1979)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. F. Meunier-Carpentier, M. Cruciani, J. Klastersky, Oral prophylaxis with miconazole or ketoconazole of invasive fungal disease in neutropenic cancer patients. Eur. J. Cancer Clin. Oncol. 19, 43–48 (1983)

    Article  CAS  PubMed  Google Scholar 

  29. R.A. Lubet, V.E. Steele, I. Eto, M.M. Juliana, G.J. Kelloff, C.J. Grubbs, Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model. Int. J. Cancer 72, 95–101 (1997)

    Article  CAS  PubMed  Google Scholar 

  30. H. Zhong, A.M. De Marzo, E. Laughner, M. Lim, D.A. Hilton, D. Zagzag, P. Buechler, W.B. Isaacs, G.L. Semenza, J.W. Simons, Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59, 5830–5835 (1999)

    CAS  PubMed  Google Scholar 

  31. T. Shibaji, M. Nagao, N. Ikeda, H. Kanehiro, M. Hisanaga, S. Ko, A. Fukumoto, Y. Nakajima, Prognostic significance of HIF-1 alpha overexpression in human pancreatic cancer. Anticancer Res. 23, 4721–4727 (2003)

    CAS  PubMed  Google Scholar 

  32. B. Bachtiary, M. Schindl, R. Potter, B. Dreier, T.H. Knocke, J.A. Hainfellner, R. Horvat, P. Birner, Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clin. Cancer Res. 9, 2234–2240 (2003)

    CAS  PubMed  Google Scholar 

  33. R. Bos, P. van der Groep, A.E. Greijer, A. Shvarts, S. Meijer, H.M. Pinedo, G.L. Semenza, P.J. van Diest, E. van der Wall, Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97, 1573–1581 (2003)

    Article  PubMed  Google Scholar 

  34. G. Powis, L. Kirkpatrick, Hypoxia inducible factor-1alpha as a cancer drug target. Mol. Cancer Ther. 3, 647–654 (2004)

    CAS  PubMed  Google Scholar 

  35. M. Malecki, P. Kolsut, R. Proczka, Angiogenic and antiangiogenic gene therapy. Gene Ther. 12(Suppl 1), S159–S169 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. N. Nishida, H. Yano, T. Nishida, T. Kamura, M. Kojiro, Angiogenesis in cancer. Vasc. Health Risk Manag. 2, 213–219 (2006)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. J.E. Rundhaug, Matrix metalloproteinases, angiogenesis, and cancer. Clin. Cancer Res. 9, 551–554 (2003)

    PubMed  Google Scholar 

  38. M. Medhora, J. Daniels, K. Mundey, B. Fisslthaler, R. Busse, E.R. Jacobs, D.R. Harder, Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284, H215–H224 (2003)

    CAS  PubMed  Google Scholar 

  39. C. Zhang, D.R. Harder, Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic acid. Stroke 33, 2957–2964 (2002)

    Article  CAS  PubMed  Google Scholar 

  40. D.H. Munzenmaier, D.R. Harder, Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release. Am. J. Physiol. Heart Circ. Physiol. 278, H1163–H1167 (2000)

    CAS  PubMed  Google Scholar 

  41. R.J. Shaw, L.C. Cantley, Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. A. Rapisarda, G. Melillo, UVC inhibits HIF-1alpha protein translation by a DNA damage- and topoisomerase I-independent pathway. Oncogene 26, 6875–6884 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. E. Connolly, S. Braunstein, S. Formenti, R.J. Schneider, Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol. Cell. Biol. 26, 3955–3965 (2006)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. C.X. Bian, Z. Shi, Q. Meng, Y. Jiang, L.Z. Liu, B.H. Jiang, P70S6K 1 regulation of angiogenesis through VEGF and HIF-1alpha expression. Biochem. Biophys. Res. Commun. 398, 395–399 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. D.A. Guertin, D.M. Sabatini, Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. K.X. Knaup, K. Jozefowski, R. Schmidt, W.M. Bernhardt, A. Weidemann, J.S. Juergensen, C. Warnecke, K.U. Eckardt, M.S. Wiesener, Mutual regulation of hypoxia-inducible factor and mammalian target of rapamycin as a function of oxygen availability. Mol. Cancer Res. 7, 88–98 (2009)

    Article  CAS  PubMed  Google Scholar 

  47. K. Zhu, W. Chan, J. Heymach, M. Wilkinson, D.J. McConkey, Control of HIF-1alpha expression by eIF2 alpha phosphorylation-mediated translational repression. Cancer Res. 69, 1836–1843 (2009)

    Article  CAS  PubMed  Google Scholar 

  48. C. Koumenis, C. Naczki, M. Koritzinsky, S. Rastani, A. Diehl, N. Sonenberg, A. Koromilas, B.G. Wouters, Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol. Cell. Biol. 22, 7405–7416 (2002)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Giovanni Melillo (National Cancer Institute, Frederick, MD, USA) for providing the pGL2-TK-HRE plasmid. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2011-0013913).

Conflict of interest

All authors of this manuscript declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Ki Baek.

Additional information

Jee-Young Park and Hui-Jung Jung contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JY., Jung, HJ., Seo, I. et al. Translational suppression of HIF-1α by miconazole through the mTOR signaling pathway. Cell Oncol. 37, 269–279 (2014). https://doi.org/10.1007/s13402-014-0182-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-014-0182-8

Keywords

Navigation