Skip to main content

Advertisement

Log in

Epigenetic control of HNF-4α in colon carcinoma cells affects MUC4 expression and malignancy

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

We previously found that enhanced expression of hepatocyte nuclear factor 4α (HNF-4α) is associated with hyper-proliferation of colon carcinoma cells. Here, the effect of histone deacetylase (HDAC) inhibitors on proliferation and the expression of HNF-4α and its downstream target genes were assessed in HM7, LS174T, HT29 and Caco-2 colon carcinoma cell lines.

Results

HNF-4α expression was found to vary in the different colon carcinoma cell lines tested, being highest in HM7. Additionally, a direct correlation with proliferation was observed. In HM7 cells, the weak HDAC inhibitor butyrate significantly inhibited the transcription of HNF-4α, its downstream target gene MUC4, and genes associated with proliferation, including the proliferating cell nuclear antigen gene PCNA. siRNA-mediated silencing of HNF-4α exerted an effect similar to butyrate on HM7 cell proliferation. The stronger HDAC inhibitor trichostatin A (TSA) exerted an effect similar to that of siRNA-mediated HNF-4α silencing and, concomitantly, inhibited the expression of the transcription factor gene SP1. Also, siRNA-mediated silencing of HDAC3 and HDAC4 reduced HNF-4α expression. Chromatin immunoprecipitation (ChIP) assays revealed that TSA induces hyperacetylation of histones H3 and H4 and, concomitantly, inhibits SP1 binding to the HNF-4α promoter. Subsequent electromobility shift assays supported these latter findings.

Conclusions

HNF-4α transcriptional expression and activity are tightly controlled by epigenetic mechanisms. HDAC inhibitor targeting of HNF-4α may serve as an effective treatment for advanced colon carcinomas, since downstream cancer-associated target genes such as MUC4 are significantly down-regulated by this treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.M. Sladek, Orphan receptor HNF-4 and liver-specific gene expression. Receptor 3, 223–232 (1993)

    PubMed  CAS  Google Scholar 

  2. A.J. Watt, W.D. Garrison, S.A. Duncan, HNF4: a central regulator of hepatocyte differentiation and function. Hepatology 37, 1249–1253 (2003)

    Article  PubMed  CAS  Google Scholar 

  3. A.L. Cattin, J. Le Beyec, F. Barreau, S. Saint-Just, A. Houllier, F.J. Gonzalez, S. Robine, M. Pincon-Raymond, P. Cardot, M. Lacasa, A. Ribeiro, Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol. Cell. Biol. 29, 6294–6308 (2009)

    Article  PubMed  CAS  Google Scholar 

  4. W.D. Garrison, M.A. Battle, C. Yang, K.H. Kaestner, F.M. Sladek, S.A. Duncan, Hepatocyte nuclear factor 4alpha is essential for embryonic development of the mouse colon. Gastroenterology 130, 1207–1220 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. S.A. Duncan, K. Manova, W.S. Chen, P. Hoodless, D.C. Weinstein, R.F. Bachvarova, J.E. Darnell Jr., Expression of transcription factor HNF-4 in the extraembryonic endoderm, gut, and nephrogenic tissue of the developing mouse embryo: HNF-4 is a marker for primary endoderm in the implanting blastocyst. Proc. Natl. Acad. Sci. U. S. A. 91, 7598–7602 (1994)

    Article  PubMed  CAS  Google Scholar 

  6. B. Schwartz, A. Algamas-Dimantov, R. Hertz, J. Nataf, A. Kerman, I. Peri, J. Bar-Tana, Inhibition of colorectal cancer by targeting hepatocyte nuclear factor-4alpha. Int. J. Cancer 124, 1081–1089 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. A. Algamas-Dimantov, D. Davidovsky, J. Ben-Ari, J.X. Kang, I. Peri, R. Hertz, J. Bar-Tana, B. Schwartz, Amelioration of diabesity-induced colorectal ontogenesis by omega-3 fatty acids in mice. J. Lipid Res. 53, 1056–1070 (2012)

    Article  PubMed  CAS  Google Scholar 

  8. J.P. Audie, A. Janin, N. Porchet, M.C. Copin, B. Gosselin, J.P. Aubert, Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J. Histochem. Cytochem. 41, 1479–1485 (1993)

    Article  PubMed  CAS  Google Scholar 

  9. A.P. Corfield, D. Carroll, N. Myerscough, C.S. Probert, Mucins in the gastrointestinal tract in health and disease. Front. Biosci. 6, D1321–D1357 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. R.S. Bresalier, B. Schwartz, Y.S. Kim, Q.Y. Duh, H.K. Kleinman, P.M. Sullam, The laminin alpha 1 chain Ile-Lys-Val-Ala-Val (IKVAV)-containing peptide promotes liver colonization by human colon cancer cells. Cancer Res. 55, 2476–2480 (1995)

    PubMed  CAS  Google Scholar 

  11. C. Shanmugam, N.C. Jhala, V.R. Katkoori, W. Wan, S. Meleth, W.E. Grizzle, U. Manne, Prognostic value of mucin 4 expression in colorectal adenocarcinomas. Cancer 116, 3577–3586 (2010)

    Article  PubMed  CAS  Google Scholar 

  12. N. Jonckheere, A. Vincent, M. Perrais, M.P. Ducourouble, A.K. Male, J.P. Aubert, P. Pigny, K.L. Carraway, J.N. Freund, I.B. Renes, I. Van Seuningen, The human mucin MUC4 is transcriptionally regulated by caudal-related homeobox, hepatocyte nuclear factors, forkhead box A, and GATA endodermal transcription factors in epithelial cancer cells. J. Biol. Chem. 282, 22638–22650 (2007)

    Article  PubMed  CAS  Google Scholar 

  13. G.A. Kozloski, C.A. Carraway, K.L. Carraway, Mechanistic and signaling analysis of Muc4-ErbB2 signaling module: new insights into the mechanism of ligand-independent ErbB2 activity. J. Cell. Physiol. 224, 649–657 (2010)

    Article  PubMed  CAS  Google Scholar 

  14. S. Ropero, M. Esteller, The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 1, 19–25 (2007)

    Article  PubMed  CAS  Google Scholar 

  15. M. Esteller, CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21, 5427–5440 (2002)

    Article  PubMed  CAS  Google Scholar 

  16. S. Minucci, P.G. Pelicci, Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6, 38–51 (2006)

    Article  PubMed  CAS  Google Scholar 

  17. H.Y. Lin, C.S. Chen, S.P. Lin, J.R. Weng, Targeting histone deacetylase in cancer therapy. Med. Res. Rev. 26, 397–413 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. A.J. Wilson, D.S. Byun, N. Popova, L.B. Murray, K. L’Italien, Y. Sowa, D. Arango, A. Velcich, L.H. Augenlicht, J.M. Mariadason, Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J. Biol. Chem. 281, 13548–13558 (2006)

    Article  PubMed  CAS  Google Scholar 

  19. N. Gurvich, O.M. Tsygankova, J.L. Meinkoth, P.S. Klein, Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 64, 1079–1086 (2004)

    Article  PubMed  CAS  Google Scholar 

  20. J.M. Mariadason, A. Velcich, A.J. Wilson, L.H. Augenlicht, P.R. Gibson, Resistance to butyrate-induced cell differentiation and apoptosis during spontaneous Caco-2 cell differentiation. Gastroenterology 120, 889–899 (2001)

    Article  PubMed  CAS  Google Scholar 

  21. J.M. Mariadason, K.L. Rickard, D.H. Barkla, L.H. Augenlicht, P.R. Gibson, Divergent phenotypic patterns and commitment to apoptosis of Caco-2 cells during spontaneous and butyrate-induced differentiation. J. Cell. Physiol. 183, 347–354 (2000)

    Article  PubMed  CAS  Google Scholar 

  22. S. Shankar, R.K. Srivastava, Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv. Exp. Med. Biol. 615, 261–298 (2008)

    Article  PubMed  CAS  Google Scholar 

  23. P.A. Marks, V.M. Richon, R.A. Rifkind, Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J. Natl. Cancer Inst. 92, 1210–1216 (2000)

    Article  PubMed  CAS  Google Scholar 

  24. M. Barshishat, S. Polak-Charcon, B. Schwartz, Butyrate regulates E-cadherin transcription, isoform expression and intracellular position in colon cancer cells. Br. J. Cancer 82, 195–203 (2000)

    Article  PubMed  CAS  Google Scholar 

  25. H.L. Newmark, J.R. Lupton, C.W. Young, Butyrate as a differentiating agent: pharmacokinetics, analogues and current status. Cancer Lett. 78, 1–5 (1994)

    Article  PubMed  CAS  Google Scholar 

  26. T. Vanhaecke, P. Papeleu, G. Elaut, V. Rogiers, Trichostatin A-like hydroxamate histone deacetylase inhibitors as therapeutic agents: toxicological point of view. Curr. Med. Chem. 11, 1629–1643 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. D. Massillon, I.J. Arinze, C. Xu, F. Bone, Regulation of glucose-6-phosphatase gene expression in cultured hepatocytes and H4IIE cells by short-chain fatty acids: role of hepatic nuclear factor-4alpha. J. Biol. Chem. 278, 40694–40701 (2003)

    Article  PubMed  CAS  Google Scholar 

  28. B. Schwartz, R.S. Bresalier, Y.S. Kim, The role of mucin in colon-cancer metastasis. Int. J. Cancer 52, 60–65 (1992)

    Article  PubMed  CAS  Google Scholar 

  29. I. Lavi, D. Levinson, I. Peri, Y. Tekoah, Y. Hadar, B. Schwartz, Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl. Microbiol. Biotechnol. 85, 1977–1990 (2010)

    Article  PubMed  CAS  Google Scholar 

  30. I. Lavi, D. Levinson, I. Peri, L. Nimri, Y. Hadar, B. Schwartz, Orally administered glucans from the edible mushroom Pleurotus pulmonarius reduce acute inflammation in dextran sulfate sodium-induced experimental colitis. Br. J. Nutr. 103, 393–402 (2010)

    Article  PubMed  CAS  Google Scholar 

  31. B. Schwartz, V.O. Melnikova, C. Tellez, A. Mourad-Zeidan, K. Blehm, Y.J. Zhao, M. McCarty, L. Adam, M. Bar-Eli, Loss of AP-2alpha results in deregulation of E-cadherin and MMP-9 and an increase in tumorigenicity of colon cancer cells in vivo. Oncogene 26, 4049–4058 (2007)

    Article  PubMed  CAS  Google Scholar 

  32. M. Barshishat, I. Levi, D. Benharroch, B. Schwartz, Butyrate down-regulates CD44 transcription and liver colonisation in a highly metastatic human colon carcinoma cell line. Br. J. Cancer 87, 1314–1320 (2002)

    Article  PubMed  CAS  Google Scholar 

  33. S. Pizzi, C. Azzoni, E. Tamburini, L. Bottarelli, N. Campanini, T. D’Adda, G. Fellegara, T.V. Luong, C. Pasquali, G. Rossi, G. Delle Fave, R. Camisa, C. Bordi, G. Rindi, Adenomatous polyposis coli alteration in digestive endocrine tumours: correlation with nuclear translocation of beta-catenin and chromosomal instability. Endocr. Relat. Cancer 15, 1013–1024 (2008)

    Article  PubMed  CAS  Google Scholar 

  34. S. Kim, J.K. Kang, Y.K. Kim, D.W. Seo, S.H. Ahn, J.C. Lee, C.H. Lee, J.S. You, E.J. Cho, H.W. Lee, J.W. Han, Histone deacetylase inhibitor apicidin induces cyclin E expression through Sp1 sites. Biochem. Biophys. Res. Commun. 342, 1168–1173 (2006)

    Article  PubMed  CAS  Google Scholar 

  35. P.A. Marks, W.S. Xu, Histone deacetylase inhibitors: potential in cancer therapy. J. Cell. Biochem. 107, 600–608 (2009)

    Article  PubMed  CAS  Google Scholar 

  36. P. Hatzis, I. Talianidis, Regulatory mechanisms controlling human hepatocyte nuclear factor 4alpha gene expression. Mol. Cell. Biol. 21, 7320–7330 (2001)

    Article  PubMed  CAS  Google Scholar 

  37. T. Tanaka, S. Jiang, H. Hotta, K. Takano, H. Iwanari, K. Sumi, K. Daigo, R. Ohashi, M. Sugai, C. Ikegame, H. Umezu, Y. Hirayama, Y. Midorikawa, Y. Hippo, A. Watanabe, Y. Uchiyama, G. Hasegawa, P. Reid, H. Aburatani, T. Hamakubo, J. Sakai, M. Naito, T. Kodama, Dysregulated expression of P1 and P2 promoter-driven hepatocyte nuclear factor-4alpha in the pathogenesis of human cancer. J. Pathol. 208, 662–672 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. M. Sugai, H. Umezu, T. Yamamoto, S. Jiang, H. Iwanari, T. Tanaka, T. Hamakubo, T. Kodama, M. Naito, Expression of hepatocyte nuclear factor 4 alpha in primary ovarian mucinous tumors. Pathol. Int. 58, 681–686 (2008)

    Article  PubMed  CAS  Google Scholar 

  39. R.S. Bresalier, Y. Niv, J.C. Byrd, Q.Y. Duh, N.W. Toribara, R.W. Rockwell, R. Dahiya, Y.S. Kim, Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J. Clin. Invest. 87, 1037–1045 (1991)

    Article  PubMed  CAS  Google Scholar 

  40. S.F. Kuan, J.C. Byrd, C.B. Basbaum, Y.S. Kim, Characterization of quantitative mucin variants from a human colon cancer cell line. Cancer Res. 47, 5715–5724 (1987)

    PubMed  CAS  Google Scholar 

  41. N. Yamada, Y. Nishida, H. Tsutsumida, M. Goto, M. Higashi, M. Nomoto, S. Yonezawa, Promoter CpG methylation in cancer cells contributes to the regulation of MUC4. Br. J. Cancer 100, 344–351 (2009)

    Article  PubMed  CAS  Google Scholar 

  42. H. Albrecht, K.L. Carraway 3rd, MUC1 and MUC4: switching the emphasis from large to small. Cancer Biother. Radiopharm. 26, 261–271 (2011)

    Article  PubMed  CAS  Google Scholar 

  43. M.A. Hollingsworth, B.J. Swanson, Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004)

    Article  PubMed  CAS  Google Scholar 

  44. K. Hosono, H. Endo, H. Takahashi, M. Sugiyama, T. Uchiyama, K. Suzuki, Y. Nozaki, K. Yoneda, K. Fujita, M. Yoneda, M. Inamori, A. Tomatsu, T. Chihara, K. Shimpo, H. Nakagama, A. Nakajima, Metformin suppresses azoxymethane-induced colorectal aberrant crypt foci by activating AMP-activated protein kinase. Mol. Carcinog. 49, 662–671 (2010)

    Article  PubMed  CAS  Google Scholar 

  45. K. Furukawa, T. Sato, T. Katsuno, T. Nakagawa, Y. Noguchi, A. Tokumasa, K. Yokote, O. Yokosuka, Y. Saito, Smad3 contributes to positioning of proliferating cells in colonic crypts by inducing EphB receptor protein expression. Biochem. Biophys. Res. Commun. 405, 521–526 (2011)

    Article  PubMed  CAS  Google Scholar 

  46. F.J. Kubben, A. Peeters-Haesevoets, L.G. Engels, C.G. Baeten, B. Schutte, J.W. Arends, R.W. Stockbrugger, G.H. Blijham, Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 35, 530–535 (1994)

    Article  PubMed  CAS  Google Scholar 

  47. T. Saandi, F. Baraille, L. Derbal-Wolfrom, A.L. Cattin, F. Benahmed, E. Martin, P. Cardot, B. Duclos, A. Ribeiro, J.N. Freund, I. Duluc, Regulation of the tumor suppressor homeogene Cdx2 by HNF4alpha in intestinal cancer. Oncogene (2012)

  48. M. Ahmad, A. Hamid, A. Hussain, R. Majeed, Y. Qurishi, J.A. Bhat, R.A. Najar, A.K. Qazi, M.A. Zargar, S.K. Singh, A.K. Saxena, Understanding histone deacetylases in the cancer development and treatment: an epigenetic perspective of cancer chemotherapy, DNA cell. Biol. (2012)

  49. L. Peng, E. Seto, Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb. Exp. Pharmacol. 206, 39–56 (2011)

    Article  PubMed  CAS  Google Scholar 

  50. H.S. Lee, M.H. Park, S.J. Yang, H.Y. Jung, S.S. Byun, D.S. Lee, H.S. Yoo, Y.I. Yeom, S.B. Seo, Gene expression analysis in human gastric cancer cell line treated with trichostatin A and S-adenosyl-L-homocysteine using cDNA microarray. Biol. Pharm. Bull. 27, 1497–1503 (2004)

    Article  PubMed  CAS  Google Scholar 

  51. J.M. Mariadason, G.A. Corner, L.H. Augenlicht, Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res. 60, 4561–4572 (2000)

    PubMed  CAS  Google Scholar 

  52. J. Serpa, F. Caiado, T. Carvalho, C. Torre, L.G. Goncalves, C. Casalou, P. Lamosa, M. Rodrigues, Z. Zhu, E.W. Lam, S. Dias, Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J. Biol. Chem. 285, 39211–39223 (2010)

    Article  PubMed  CAS  Google Scholar 

  53. H. Yoshioka, H. Kamitani, T. Watanabe, T.E. Eling, Nonsteroidal anti-inflammatory drug-activated gene (NAG-1/GDF15) expression is increased by the histone deacetylase inhibitor trichostatin A. J. Biol. Chem. 283, 33129–33137 (2008)

    Article  PubMed  CAS  Google Scholar 

  54. S. Paterson, K.L. Sin, J.M. Tiang, R.F. Minchin, N.J. Butcher, Histone deacetylase inhibitors increase human arylamine N-acetyltransferase-1 expression in human tumor cells. Drug Metab. Dispos. 39, 77–82 (2011)

    Article  PubMed  CAS  Google Scholar 

  55. L. Pufahl, C. Katryniok, N. Schnur, B.L. Sorg, J. Metzner, M. Grez, D. Steinhilber, Trichostatin A induces 5-lipoxygenase promoter activity and mRNA expression via inhibition of histone deacetylase 2 and 3. J. Cell. Mol. Med. (2011)

  56. T. Suzuki, A. Kimura, R. Nagai, M. Horikoshi, Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells 5, 29–41 (2000)

    Article  PubMed  CAS  Google Scholar 

  57. S. Zhao, K. Venkatasubbarao, S. Li, J.W. Freeman, Requirement of a specific Sp1 site for histone deacetylase-mediated repression of transforming growth factor beta Type II receptor expression in human pancreatic cancer cells. Cancer Res. 63, 2624–2630 (2003)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel Science Foundation; Grant number: 134/06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Schwartz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Effect of butyrate on HNF-4α and MUC4 expression in HM7, LS174T, HT29 and Caco-2 cell lines. (A) Representative western blot analysis of HNF-4α expression in HM7, LS174T, HT29 and Caco-2. Effect of HDACI butyrate (5 mM) treatment on HNF-4α expression in these cell lines. (B) HNF-4α expression normalized to β-actin, mean ± SEM of six independent determinations for each cell line. *,Significantly different from nontreated HM7 cell line at P < 0.01. (JPEG 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algamas-Dimantov, A., Yehuda-Shnaidman, E., Peri, I. et al. Epigenetic control of HNF-4α in colon carcinoma cells affects MUC4 expression and malignancy. Cell Oncol. 36, 155–167 (2013). https://doi.org/10.1007/s13402-012-0123-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-012-0123-3

Keywords

Navigation