Skip to main content
Log in

Prediction of gaseous, liquid and solid mass yields from hydrothermal carbonization of biogas digestate by severity parameter

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The product yields of hydrothermal carbonization of digestate as well as the degree of carbonization of hydrochar are quantified as functions of process parameters by using a severity approach. In contrast to other studies, a logarithmic dependence on process severity was applied. Process severity itself was calculated from temperature, retention time and catalyst concentration. Data gained from batch experiments (190–245 °C, 140–560 min) was used to fit the model parameters. By these models basing on few selected reaction conditions, a wide range of process conditions can be covered and the yields for the solid, liquid and gaseous product phase can be predicted. Moreover, the paper delivers model equations for the prediction of the H/C and O/C ratios for the solid product phase. Such model equations can be used for process optimization and are the foundation for proper LCA calculations. For the first time, the quantitative impact of the difference in reaction conditions on the product phase yield is described and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Titirici MM, Thomas A, Yu S, Mueller J, Antonietti M (2007) A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chem Mater 19(17):4205–4212

    Article  Google Scholar 

  2. Titirici M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31(6):787

    Article  Google Scholar 

  3. Kambo HS, Dutta A (2014) Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization. Appl Energy 135(SI):182–

  4. Funke A, Reebs F, Kruse A (2013) Experimental comparison of hydrothermal and vapothermal carbonization. Fuel Process Technol 115:261–269

    Article  Google Scholar 

  5. Fuertes AB, Arbestain MC, Sevilla M, Macia-Agullo JA, Fiol S, Lopez R et al (2010) Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Aust J Soil Res 48(6–7, SI):618–626

    Article  Google Scholar 

  6. Bai M, Wilske B, Buegger F, Esperschuetz J, Kammann CI, Eckhardt C et al (2013) Degradation kinetics of biochar from pyrolysis and hydrothermal carbonization in temperate soils. Plant Soil 372(1–2):375–387

    Article  Google Scholar 

  7. Malghani S, Gleixner G, Trumbore SE (2013) Chars produced by slow pyrolysis and hydrothermal carbonization vary in carbon sequestration potential and greenhouse gases emissions. Soil Biol Biochem 62:137–146

    Article  Google Scholar 

  8. Liu Z, Balasubramanian R (2014) Upgrading of waste biomass by hydrothermal carbonization (HTC) and low temperature pyrolysis (LTP): a comparative evaluation. Appl Energy 114(SI):857–864

    Article  Google Scholar 

  9. Danso-Boateng E, Shama G, Wheatley AD, Martin SJ, Holdich RG (2015) Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production. Bioresour Technol 177:318–327

    Article  Google Scholar 

  10. Guiotoku M, Rambo CR, Hotza D (2014) Charcoal produced from cellulosic raw materials by microwave-assisted hydrothermal carbonization. J Therm Anal Calorim 117(1):269–275

    Article  Google Scholar 

  11. Reza MT, Wirth B, Lueder U, Werner M (2014) Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresour Technol 169:352–361

    Article  Google Scholar 

  12. Yan W, Hoekman SK, Broch A, Coronella CJ (2014) Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets. Environ Prog Sust Energ 33(3):676–680

    Article  Google Scholar 

  13. Reza MT, Yan W, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ et al (2013) Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol 139:161–169

    Article  Google Scholar 

  14. Lynam JG, Reza MT, Vasquez VR, Coronella CJ (2012) Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass. Fuel 99:271–273

    Article  Google Scholar 

  15. Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94

    Article  Google Scholar 

  16. Wiedner K, Naisse C, Rumpel C, Pozzi A, Wieczorek P, Glaser B (2013) Chemical modification of biomass residues during hydrothermal carbonization—what makes the difference, temperature or feedstock? Org Geochem 54:91–100

    Article  Google Scholar 

  17. Roman S, Nabais JMV, Laginhas C, Ledesma B, Gonzalez JF (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103(SI):78–83

    Article  Google Scholar 

  18. Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuel 25(4):1802–1810

    Article  Google Scholar 

  19. Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102(19):9255–9260

    Article  Google Scholar 

  20. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51

    Article  Google Scholar 

  21. Ruyter HP (1982) Coalification model. Fuel 61(12):1182–1187

    Article  Google Scholar 

  22. Abatzoglou N, Chornet E, Belkacemi K, Overend RP (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem Eng Sci 47(5):1109–1122

    Article  Google Scholar 

  23. Janga KK, Øyaas K, Hertzberg T, Moe ST (2012) Application of a pseudo-kinetic generalized severity model to the concentrated sulfuric acid hydrolysis of pinewood and aspenwood. BioResources 7(3)

  24. Kruse A, Badoux F, Grandl R, Wüst D (2012) Hydrothermale Karbonisierung: 2. Kinetik der Biertreber-Umwandlung. Chemie Ingenieur Tech 84(4):509–512

    Article  Google Scholar 

  25. Kieseler S, Neubauer Y, Zobel N (2013) Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids. Energy Fuels 27(2):908–918

    Article  Google Scholar 

  26. Forchheim D, Hornung U, Kruse A, Sutter T (2014) Kinetic modelling of hydrothermal lignin depolymerisation. Waste Biomass Valor 5(6):985–994

    Article  Google Scholar 

  27. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Bioref 4(2):160–177

    Article  Google Scholar 

  28. Montane D, Salvade J, Farriol X, Jollez P, Chornet E (1994) Phenomenological kinetics of wood delignification: application of a time-dependent rate constant and a generalized severity parameter to pulping and correlation of pulp properties. Wood Sci Technol 28(6)

  29. Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J (2013) Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng 1(9):1092–1101

    Article  Google Scholar 

  30. Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: process water characterization and effects of water recirculation. Bioresour Technol 143:139–146

    Article  Google Scholar 

  31. Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ et al (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34(6):875–882

    Article  Google Scholar 

  32. Heilmann SM, Jader LR, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2011) Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 35(7):2526–2533

    Article  Google Scholar 

  33. Mott RA, Spooner CE (1940) The calorific value of carbon in coal: the Dulong relationship. Fuel 19(10, 11):226–231, 242–251

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Joachim Schulze and Dr. Martin Brüchert from Fraunhofer Institute for Technological Trend Analysis INT in Euskirchen (Germany) for supporting this work and all reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Uwe Suwelack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwelack, K.U., Wüst, D., Fleischmann, P. et al. Prediction of gaseous, liquid and solid mass yields from hydrothermal carbonization of biogas digestate by severity parameter. Biomass Conv. Bioref. 6, 151–160 (2016). https://doi.org/10.1007/s13399-015-0172-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-015-0172-8

Keywords

Navigation