Skip to main content
Log in

Experimental investigation of a sequential process for the fractionation of sweet sorghum bagasse

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Sweet sorghum bagasse (SSB) was fractionated into hemicellulosic sugars and cellulose-rich residue in a two-step process using water and calcium hydroxide. The optimum conditions for autohydrolysis of SSB using water at 121 °C were 13 %(g/g) substrate and 90 min isothermal treatment time that could extract 72.69 ± 0.08 % (g/g) of the hemicellulose from the substrate. The calcium hydroxide treatment of the autohydrolysed SSB under optimum conditions at 121 °C, 10 % (g/g mixture) substrate loading, Ca(OH)2 at 10 % (g/g of substrate) and 106 min isothermal treatment could extract 69.67 ± 1.26 % (g/g) of the lignin from the substrate into a yellow liquor. The lignin was isolated from the yellow liquor by using CO2 at room temperature. Adding CO2 at a flow rate of 17 mL/min precipitated 65.99 ± 1.2 % (g/g) of the calcium hydroxide as calcium carbonate and 58.85 ± 3.2 % (g/g) of the lignin in the yellow liquor at room temperature. The FTIR, DSC and SEM analyses confirmed the compositional and morphological changes in the treated SSB samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35(5):367–375

    Article  Google Scholar 

  2. Papatheofanous MG, Billa E, Koullas DP, Monties B, Koukios EG (1995) Two-stage acid-catalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresour Technol 54(3):305–310

    Article  Google Scholar 

  3. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  Google Scholar 

  4. Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57(3):191–202

    Article  Google Scholar 

  5. Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18(3):189–199

    Article  Google Scholar 

  6. Wu L, Arakane M, Ike M, Wada M, Takai T, Gau M et al (2011) Low temperature alkali pretreatment for improving enzymatic digestibility of sweet sorghum bagasse for ethanol production. Bioresour Technol 102(7):4793–4799

    Article  Google Scholar 

  7. Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol 74(3):135–159

    Article  Google Scholar 

  8. Chang VS, Burr B, Holtzapple MT (1997) Lime pretreatment of switchgrass. In: Biotechnology for fuels and chemicals, Springer,pp 3-19

  9. Sierra R, Granda C, Holtzapple MT (2009) Short-term lime pretreatment of poplar wood. Biotechnol Prog 25(2):323–332

    Article  Google Scholar 

  10. Saha BC, Cotta MA (2008) Lime pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol. Biomass Bioenergy 32(10):971–977

    Article  Google Scholar 

  11. Sun R, Tomkinson J (2001) Fractional separation and physico-chemical analysis of lignins from the black liquor of oil palm trunk fibre pulping. Sep Purif Technol 24(3):529–539

    Article  Google Scholar 

  12. Sun R, Tomkinson J, Bolton J (1999) Effects of precipitation pH on the physico-chemical properties of the lignins isolated from the black liquor of oil palm empty fruit bunch fibre pulping. Polym Degrad Stab 63(2):195–200

    Article  Google Scholar 

  13. Rohella R, Sahoo N, Paul S, Choudhury S, Chakravortty V (1996) Thermal studies on isolated and purified lignin. Thermochim Acta 287(1):131–138

    Article  Google Scholar 

  14. Minu K, Jiby KK, Kishore V (2012) Isolation and purification of lignin and silica from the black liquor generated during the production of bioethanol from rice straw. Biomass Bioenergy 39:210–217

    Article  Google Scholar 

  15. Naqvi M, Yan J, Dahlquist E (2010) Black liquor gasification integrated in pulp and paper mills: a critical review. Bioresour Technol 101(21):8001–8015

    Article  Google Scholar 

  16. Eriksson H, Harvey S (2004) Black liquor gasification—consequences for both industry and society. Energy 29(4):581–612

    Article  Google Scholar 

  17. Tomani P, Axegård P, Berglin N, Lovell A, Nordgren D (2011) Integration of lignin removal into a kraft pulp mill and use of lignin as a biofuel. Cellul Chem Technol 45(7):533

    Google Scholar 

  18. Kurian JK, Nair GR, Gariepy Y, Lefsrud M, Orsat V, Seguin P et al (2014) An experimental study on hydrothermal treatment of sweet sorghum bagasse for the extraction of hemicellulose. Biomass Convers Biorefin: 1-11

  19. Kurian JK, Gariepy Y, Lefsrud M, Orsat V, Seguin P, Yaylayan V et al (2014) Experimental study on calcium hydroxide-assisted delignification of hydrothermally treated sweet sorghum bagasse. Int J Chem Eng:1-9

  20. Shakhashiri BZ (1989) Chemical demonstrations: a handbook for teachers of chemistry, vol 3. Univ of Wisconsin Press, Madison

    Google Scholar 

  21. Van Soest PV, Robertson J, Lewis B (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74(10):3583–3597

    Article  Google Scholar 

  22. Panagiotopoulos C, Wurl O (2009) Spectrophotometric and chromatographic analysis of carbohydrates in marine samples. In: Wurl O (ed) Practical guidelines for the analysis of seawater. CRC Press, Boca Raton, pp 49–65

    Google Scholar 

  23. Deschatelets L, Ernest K (1986) A simple pentose assay for biomass conversion studies. Appl Microbiol Biotechnol 24(5):379–385

    Article  Google Scholar 

  24. Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol Prog 16(4):637–641

    Article  Google Scholar 

  25. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedures (LAP), National Renewable Energy Laboratory (NREL), Golden, CO. Revised version Jul 2011

  26. Kindstedt PS, Kosikowski FV (1985) Improved complexometric determination of calcium in cheese. J Dairy Sci 68(4):806–809

    Article  Google Scholar 

  27. Acosta-Estrada BA, Lazo-Vélez MA, Nava-Valdez Y, Gutiérrez-Uribe JA, Serna-Saldívar SO (2014) Improvement of dietary fiber, ferulic acid and calcium contents in pan bread enriched with nejayote food additive from white maize (Zea mays). J Cereal Sci 60(1):264–269

    Article  Google Scholar 

  28. Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C et al (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, Golden, CO, NREL Technical Report No. NREL/TP-510-42621

  29. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906

    Article  Google Scholar 

  30. Goshadrou A, Karimi K, Taherzadeh MJ (2011) Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Ind Crop Prod 34(1):1219–1225

    Article  Google Scholar 

  31. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340(15):2376–2391

    Article  Google Scholar 

  32. Zhang J, Ma X, Yu J, Zhang X, Tan T (2011) The effects of four different pretreatments on enzymatic hydrolysis of sweet sorghum bagasse. Bioresour Technol 102(6):4585–4589

    Article  Google Scholar 

  33. Kim TH, Kim JS, Sunwoo C, Lee YY (2003) Pretreatment of corn stover by aqueous ammonia. Bioresour Technol 90(1):39–47

    Article  Google Scholar 

  34. Perego P, Converti A, Palazzi E, Del Borghi M, Ferraiolo G (1990) Fermentation of hardwood hemicellulose hydrolysate byPachysolen tannophilus, Candida shehatae andPichia stipitis. J Ind Microbiol 6(3):157–164

    Article  Google Scholar 

  35. Alves LA, Felipe MG, Silva JBAE, Silva SS, Prata AM (1998) Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production byCandida guilliermondii. Appl Biochem Biotechnol 70(1):89–98

    Article  Google Scholar 

  36. Chua MG, Wayman M (1979) Characterization of autohydrolysis aspen (P. tremuloides) lignins. Part 1. Composition and molecular weight distribution of extracted autohydrolysis lignin. Can J Chem 57(10):1141–1149

    Article  Google Scholar 

  37. Périn-Levasseur Z, Savulescu L, Benali M (2011) Lignin production path assessment: energy, water, and chemical integration perspective. J Sci Technol For Prod Proc 1(3):25–30

    Google Scholar 

  38. Wiebe R, Gaddy VL (1940) The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. Critical Phenomena. J Am Chem Soc 62(4):815–817

    Article  Google Scholar 

  39. Lora J, Glasser W (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48

    Article  Google Scholar 

  40. Li W, Sun N, Stoner B, Jiang X, Lu X, Rogers RD (2011) Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chem 13(8):2038–2047

    Article  Google Scholar 

  41. Bouajila J, Dole P, Joly C, Limare A (2006) Some laws of a lignin plasticization. J Appl Polym Sci 102(2):1445–1451

    Article  Google Scholar 

  42. Lisperguer J, Perez P, Urizar S (2009) Structure and thermal properties of lignins: characterization by infrared spectroscopy and differential scanning calorimetry. J Chil Chem Soc 54:460–4603

    Article  Google Scholar 

  43. Gregorova A (2013) Application of differential scanning calorimetry to the characterization of biopolymers. In: Elkordy AA (ed) Applications of Calorimetry in a wide context—differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry, InTech Open Science, http://dx.doi.org/10.5772/53822

  44. Murugan P, Mahinpey N, Johnson KE, Wilson M (2008) Kinetics of the pyrolysis of lignin using thermogravimetric and differential scanning calorimetry methods. Energy Fuel 22(4):2720–2724

    Article  Google Scholar 

  45. Tsujiyama S-I, Miyamori A (2000) Assignment of DSC thermograms of wood and its components. Thermochim Acta 351(1):177–181

    Article  Google Scholar 

  46. Tjeerdsma BF, Militz H (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst 63(2):102–111

    Article  Google Scholar 

  47. Lasure LL, Zhang M (2004) Bioconversion and biorefineries of the future. Draft report from the Pacific Northwest National Laboratory and National Renewable Energy Lab.www.pnnl.gov/biobased/docs/biorefineries.pdf Accessed 25 August 2014

Download references

Acknowledgments

The authors are acknowledging the financial assistance from the Fonds Québécois de la Recherchesur la Nature et les Technologies (FQRNT) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiby Kudakasseril Kurian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurian, J.K., Nair, G.R., Gariepy, Y. et al. Experimental investigation of a sequential process for the fractionation of sweet sorghum bagasse. Biomass Conv. Bioref. 6, 1–11 (2016). https://doi.org/10.1007/s13399-015-0161-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-015-0161-y

Keywords

Navigation