Skip to main content
Log in

Assessment of advanced oxidative processes based on heterogeneous catalysis as a detoxification method of rice straw hemicellulose hydrolysate and their effect on ethanol production by Pichia stipitis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the present work, detoxification treatments based on advanced oxidative processes (AOPs) aiming to improve the ethanol production by Pichia stipitis were evaluated. The experimental design was carried out according to a Taguchi L8 orthogonal array in order to evaluate the influences of pH, catalyst type (ZnO or TiO2), UV radiation (UVA or UVC), and oxidant agent (O2 or O3) on aromatic compounds concentration and fermentation performed. The results showed that treatment conditions which most contribute to reducing the toxicity of the hydrolysate in relation to ethanol production were pH 8.0 and the use of O3 as an oxidizing agent. Within the region evaluated, there was no difference between the use of TiO2 or ZnO and or UVA or UVC radiation. The heterogeneous AOPs were able to remove above 49 % of the furan, above 39 % of the total phenolic compounds, and 100 % of the low molecular weight phenolic compounds, without affecting the sugar concentrations in the hydrolysate. Furthermore, heterogeneous processes have provided relevant increases on sugars consumption (148 %) and maximum ethanol concentration (154 %) as compared with untreated hydrolysate. In addition, the AOPs treatment showed advantages such as it does not generate waste, does not degrade hydrolysate sugars, and does not lead to loss of hydrolysate volume due to the treatment. Based on the results, it can be concluded that AOPs are promising processes for application in hydrolysate treatment to reduce toxicity and consequently improve the fermentability of lignocellulosic hydrolysates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eliasson A, Christensson C, Wahlbom F, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XYS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66(8):3381–3386

    Article  Google Scholar 

  2. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  Google Scholar 

  3. Arslan S, Saraçoglu NE (2010) Effect of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia stipitis to ethanol. Bioresour Technol 101:8664–8670

    Article  Google Scholar 

  4. Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol 98:1947–1950

    Article  Google Scholar 

  5. Villarreal MLM, Prata AMR, Felipe MGA, Silva JBA (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24

    Article  Google Scholar 

  6. López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64:125–131

    Article  Google Scholar 

  7. Lee JM, Venditti AR, Jameel H, Kenealy WR (2011) Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass Bioenergy 35:626–636

    Article  Google Scholar 

  8. Zhu J, Yong Q, Xu Y, Yu S (2011) Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776. Bioresour Technol 102:1663–1668

    Article  Google Scholar 

  9. Martinez A, Rodrigues ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293. doi:10.1021/bp0001720

    Article  Google Scholar 

  10. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates I: inhibition and detoxification. Bioresour Technol 74:25–33

    Article  Google Scholar 

  11. Telli-Okur M, Eken-Saraçoglu N (2008) Fermentation of sunflower seed hull hydrolysate to ethanol by Pichia stipitis. Bioresour Technol 99:2162–2169

    Article  Google Scholar 

  12. Larsson S, Reimann A, Nilvebrant NO, Jonsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77–79:91–103

    Article  Google Scholar 

  13. Eken-Saraçoglu N, Arslan Y (2000) Comparison of different pretreatments in ethanol fermentation using corn cob hemicellulosic hydrolysate with Pichia stipitis and Candida shehatae. Biotechnol Lett 22:855–858

    Article  Google Scholar 

  14. Mussatto SI, Santos JC, Roberto IC (2004) Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 79:590–596

    Article  Google Scholar 

  15. Silva JPA, Carneiro LM, Roberto IC (2013) Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: a new and promising detoxification method to improve the bioconversion process. Biotechnol Biofuels 6(23)

  16. Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9:335–352

    Article  Google Scholar 

  17. Ahmed B, Mohamed H, Limem E, Bensalah N (2009) Degradation and mineralization of organic pollutants contained in actual pulp and paper mill wastewaters by a UV/H2O2 process. Ind Eng Chem 48:3370–3379

    Google Scholar 

  18. Peralta-Zamora Wypych F, Carneiro LM, Vaz SR (2004) Remediation of phenol lignin and paper effluents by advanced oxidative processes. Environ Technol 25:1331–1339

    Article  Google Scholar 

  19. Catalkaya EC, Kargi F (2008) Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals. J Environ Manage 87:396–404

    Article  Google Scholar 

  20. Torrades F, Perez M, Mansilla H, Peral J (2003) Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents. Chemosphere 53:1211–1220

    Article  Google Scholar 

  21. Perez M, Torrades F, Garcia-Hortal JA, Domenech X, Peral J (2001) Removal of organic contaminants in paper pulp treatment effluents under Fenton and photo-Fenton conditions. Appl Catal Environ 36:63–74

    Article  Google Scholar 

  22. Pacheco JR, Peralta-Zamora PG (2004) Integration of physical chemistry and advanced oxidative processes for remediation of landfill leachate. Engenharia Sanitária e Ambiental 9(4):306–311

    Article  Google Scholar 

  23. Nogueira RFP, Trovó AG, Silva MRA, Villa RD, Oliveira MCO (2007) Fundamentos e aplicações ambientais dos processos Fenton e foto-Fenton. Química Nova 30(2):400–408

    Article  Google Scholar 

  24. Freire RS, Pelegrini R, Kubota LT, Durán N (2000) Novas tendências para o tratamento de resíduos industriais contendo espécies organocloradas. Química Nova 23(4):504–511

    Article  Google Scholar 

  25. Huang CP, Dong C, Tang Z (1993) Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Manag 13:361–377

    Article  Google Scholar 

  26. Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698. doi:10.1021/cr00018a003

    Article  Google Scholar 

  27. Lanzalunga O, Bietti M (2000) Photo- and radiation chemical induced degradation of lignin model compounds. J Photochem Photobiol B Biol 56:85–108

    Article  Google Scholar 

  28. Guimarães JR, Almeida Junior RL, Maniero MG, Fadini PS (2010) Ozonização em meio básico para redução de cor do licor negro de indústria de celulose de algodão. Engenharia Sanitária e Ambiental 15(1):93–98

    Article  Google Scholar 

  29. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chemical Review 95:69–96

    Article  Google Scholar 

  30. Khodja AA, Sehili T, Pilichowski JF, Boule P (2001) Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A Chem 141:231–239

    Article  Google Scholar 

  31. Poulios I, Kositzi M, Kouras A (1998) Photocatalytic decomposition of triclopyr over aqueous semiconductor. J Photochem Photobiol A Chem 115:175–183

    Article  Google Scholar 

  32. Behnajady MA, Modirshahla N, Daneshvar N, Rabbani M (2007) Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode. J Hazard Mater 140:257–263

    Article  Google Scholar 

  33. Spacek W, Bauer R, Heisler G (1995) Heterogeneous and homogeneous wastewater treatment comparison between photodegradation with TiO2 and the photo-Fenton reaction. Chemosphere 30:477–484

    Article  Google Scholar 

  34. Selvin R, Hsu HL, Arul NS, Mathew S (2010) Comparison of Photo-Catalytic Efficiency of Various Metal Oxide Photo-Catalysts for the Degradation of Methyl Orange. Sci Adv Mater 2:58–63

    Article  Google Scholar 

  35. Rego E, Marto J, Marcos PS, Labrincha JA (2009) Decolouration of orange II solutions by TiO2 and ZnO active layers screen-printed on ceramic tiles under sunlight irradiation. Appl Catal Gen 355:109–114

    Article  Google Scholar 

  36. Li X, Lv K, Deng K, Tang J, Su R, Sun J, Chen L (2009) Synthesis and characterization of ZnO and TiO2 hollow spheres with enhanced photoreactivity. Mater Sci Eng B 158:40–47

    Article  Google Scholar 

  37. Suri RPS, Liu J, Hand DW, Crittenden JC, Perram DL, Mullins ME (1993) Heterogeneous photocatalytic oxidation of hazardous organic contaminants in water. Water Environ Res 65:665–673

    Article  Google Scholar 

  38. Ziolli RL, Jardim WF (1998) Mecanismo de fotodegradação de compostos orgânicos catalisada por TiO2 Química Nova 21:319–325

    Google Scholar 

  39. Andreozzi R, Caprio V, Insola A, Marotta F (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59

    Article  Google Scholar 

  40. Giri RR, Ozaki H, Taniguchi S, Takanami R (2008) Photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid in water with a new TiO2 fiber. Int J Environ Sci Technol 5(1):17–26

    Google Scholar 

  41. Gernjak W, Krutzler T, Glaser A, Malato S, Caceres J, Bauer R, Fernández-Alba AR (2003) Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere 50:71–78

    Article  Google Scholar 

  42. Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optmization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crops Prod 17:171–176

    Article  Google Scholar 

  43. Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2012) Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renew Energy 37:259–265

    Article  Google Scholar 

  44. Singleton V, Orthofer R, Lamuela-Raventós R (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteus reagent. Methods Enzymol 299:152–178

    Article  Google Scholar 

  45. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  Google Scholar 

  46. Liu L, Liu H, Zhao YP, Wang Y, Duan Y, Gao G, Ge M, Chen W (2008) Directed synthesis of hierarchical nanostructured TiO2 catalysts and their morphology-dependent photocatalysis for phenol degradation. Environ Sci Technol 42(7):2342–2348

    Article  Google Scholar 

  47. Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodriguez JJ (2005) Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39:9295–9302. doi:10.1021/es050452h

    Article  Google Scholar 

  48. Scheck CK, Frimmel FH (1995) Degradation of phenol and salicylic acid by ultraviolet radiation/hydrogen peroxide/oxygen. Water Res 29:2346–2352

    Article  Google Scholar 

  49. Zhanga S, Zhenga Z, Wanga J, Chen J (2006) Heterogeneous photocatalytic decomposition of benzene on lanthanum-doped TiO2film at ambient temperature. Chemosphere 65(11):2282–2288

    Article  Google Scholar 

  50. Machado AEH, Ruggiero R, Neumann MG (1994) Fotodegradação de ligninas acelerada por peróxido de hidrogênio: evidências de participação do 1O2(1Δg) nas reações em meio alcalino. Química Nova 17(2):111–118

    Google Scholar 

  51. Nigam JN (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xilose-fermenting yeast. J Biotechnol 97:107–116

    Article  Google Scholar 

  52. Roberto IC, Lacis LS, Barbosa MFS, Mancilha IM (1991) Utilization of sugar cane bagasse hemicellulosic hydrolysate by Pichia stipitis for the production of ethanol. Process Biochem 26:15–21

    Article  Google Scholar 

  53. Nigam JN (2001) Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. J Ind Microbiol Biotechnol 3:145–150

    Article  Google Scholar 

  54. Van Zyl C, Prior AB, Du-Preez JC (1988) Production of ethanol from sugar cane bagasse hemicelulose hydrolyzate by Pichia stipitis. Appl Biochem Biotechnol 357–369. doi: 10.1007/BF02779170

  55. Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    Article  Google Scholar 

  56. Huang CF, Lin TH, Guo GL, Hwang WS (2009) Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresource Technol 100:3914–3920

    Article  Google Scholar 

  57. Chandel AK, Singh OV, Rao LV, Chandrasekhar G, Narasu ML (2011) Bioconversion of novel substrate Saccharum spontaneum a weedy material into ethanol by Pichia stipitis NCIM3498. Bioresour Technol 102(2):1709–1714

    Article  Google Scholar 

  58. Walton S, Heiningen AV, Walsum PV (2010) Inhibition effects on fermentation of hardwood extracted hemicelluloses by acetic acid and sodium. Bioresour Technol 101:935–1940

    Article  Google Scholar 

  59. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lulasik (2010) Hemicelluloses for fuel ethanol. A review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Proc. 2010/52673-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Cientifico e tecnológico (CNPq)-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Conceição Roberto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, J.P.A., Carneiro, L.M. & Roberto, I.C. Assessment of advanced oxidative processes based on heterogeneous catalysis as a detoxification method of rice straw hemicellulose hydrolysate and their effect on ethanol production by Pichia stipitis . Biomass Conv. Bioref. 4, 225–236 (2014). https://doi.org/10.1007/s13399-013-0104-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-013-0104-4

Keywords

Navigation