Skip to main content
Log in

Thermodynamic modelling of fate and removal of alkali species and sour gases from biomass gasification for production of biofuels

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The development of advanced synthesis gas cleaning technologies based on chemical conversion and physical separation can improve the efficiency of gasification processes for production of biofuels. This paper outlines thermodynamic equilibrium calculations on the release and removal of alkali species and sour gases during gasification of 24 different types of herbaceous and woody biomass under the conditions of the gasifier in Güssing, Austria. In general, the calculation results are in good agreement with former experimental results. The composition of the gasifier derived as well as the cleaned gas strongly depends on the used feedstock. The alkali concentration can be limited to values below 100 ppbv using aluminosilicates at 850 °C. The H2S concentration cannot be limited to values below 200 ppmv using conventional Ca- or Cu-based sorbents but can be limited to values below 1 ppmv by stabilised BaO at 850 °C. The HCl concentration can be limited to values below 1 ppmv by alkali carbonates at temperatures below 550 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hofbauer H, Rauch R, Bosch K, Koch R, Aichernig C (2009) Biomass CHP plant Güssing—a success story. Expert meeting on pyrolysis and gasification of biomass and waste. Strasbourg, France

  2. Punjak WA, Shadman F (1988) Aluminosilicate sorbents for control of alkali vapors during coal combustion and gasification. Energy Fuel 2:702–708

    Article  Google Scholar 

  3. Rieger M, Mönter D, Schulz RA (1999) Removal of alkali from high temperature gasses: sorbent reactivity and capacity. In: Dittler A, G Hemmer, G Kasper (eds) High temperature gas cleaning, Vol. II. Institut für Mechanische Verfahrenstechnik und Mechanik Universität Karlsruhe (TH), Karlsruhe, pp 760–71

  4. Dou BL, Shen WQ, Gao JS, Sha XZ (2003) Adsorption of alkali metal vapor from high-temperature coal-derived gas by solid sorbents. Fuel Process Technol 82:51–60

    Article  Google Scholar 

  5. Bachovchin DM, Alvin MA, DeZubay EA, Mulik PR (1986) A study of alkali in pressurized gasification system. Process report, Westinghouse Research and Development Center, Chemical Sciences Division, Pittsburgh, PA

  6. Uberoi M, Punjak WA, Shadman F (1990) The kinetics and mechanism of alkali removal from flue-gases by solid sorbents. Prog Energy Combust Sci 16:205–211

    Article  Google Scholar 

  7. Li YL, Li J, Jin YQ, Wu YQ, Gao JS (2005) Study on alkali-metal vapor removal for high-temperature cleaning of coal gas. Energy Fuel 19:1606–1610

    Article  Google Scholar 

  8. Zheng Y, Jensen PA, Jensen AD (2008) A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor. Fuel 87:3304–3312

    Article  Google Scholar 

  9. Turn SQ, Kinoshita CM, Ishimura DM, Zhou J, Hiraki TT, Masutani SM (1998) A review of sorbent materials for fixed bed alkali getter systems in biomass gasifier combined cycle power generation applications. J I Energy 71:163–177

    Google Scholar 

  10. Turn SQ, Kinoshita CM, Ishimura DM, Hiraki TT, Zhou J, Masutani SM (2001) An experimental investigation of alkali removal from biomass producer gas using a fixed bed of solid sorbent. Ind Eng Chem Res 40:1960–1967

    Article  Google Scholar 

  11. Jazbec M, Sendt K, Haynes BS (2004) Kinetic and thermodynamic analysis of the fate of sulphur compounds in gasification products. Fuel 83:2133–2138

    Article  Google Scholar 

  12. Westmoreland PR, Harrison DP (1976) Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases. Environ Sci Technol 10:659–661

    Article  Google Scholar 

  13. Yumura EM, Furimsky EE (1986) Solid adsorbents for removal of hydrogen-sulfide from hot gas. Erdol Kohle Erdgas P 39:163–172

    Google Scholar 

  14. Kottinen J, Mojatahedi W (1993) Gasifier gas desulphurisation at high temperature and pressure. Kemia-Kemi 20:52–56

    Google Scholar 

  15. Gasper-Galvin LL, Atimtay AT, Gupta RP (1998) Zeolite-supported metal oxide sorbents for hot-gas desulfurization. Ind Eng Chem Res 37:4157–4166

    Article  Google Scholar 

  16. de Diego LF, Garcia-Labiano F, Adánez J, Palacios J (1999) Factors affecting the H2S reaction with noncalcined limestones and half-calcined dolomites. Energy Fuel 13:146–153

    Article  Google Scholar 

  17. Garcia-Labiano JF, de Diego JL, Fierro JV, Adanez JJ (1999) Utilization of calcium acetate and calcium magnesium acetate for H2S removal in coal gas cleaning at high temperatures. Energy Fuel 13:440–448

    Article  Google Scholar 

  18. Katalambula H, Bawagan A, Takeda S (2001) Mineral attachment to calcium-based sorbent particles during in situ desulfurization in coal gasification processes. Fuel Process Technol 73:75–93

    Article  Google Scholar 

  19. Constant TK, Doraiswamy TL, Wheelock TT, Akiti TT (2001) Development of an advanced calcium-based sorbent for desulfurizing hot coal gas. Adv Environ Res 5:31–38

    Article  Google Scholar 

  20. Katalambula H, Escallon MM, Takeda S (2001) Influence of Ca-based sorbent particle size on the occurrence of solid-solid reactions during in-situ desulfurization of the coal-derived gas. Energy Fuel 15:317–323

    Article  Google Scholar 

  21. Hartman M, Trnka O, Svoboda K, Vesely V (2003) Thermal dissociation and H2S reactivity of Czech limestones. Chem Pap-Chem Zvesti 57:309–316

    Google Scholar 

  22. Sotirchos SV, Smith AR (2004) Performance of porous CaO obtained from the decomposition of calcium-enriched bio-oil as sorbent for SO2 and H2S removal. Ind Eng Chem Res 43:1340–1348

    Article  Google Scholar 

  23. Álvarez-Rodríguez R, Clemente-Jul C (2008) Hot gas desulphurisation with dolomite sorbent in coal gasification. Fuel 87:3513–3521

    Article  Google Scholar 

  24. Hartman M, Svoboda K, Trnka O, Cermak J (2002) Reaction between hydrogen sulfide and limestone calcines. Ind Eng Chem Res 41:2392–2398

    Article  Google Scholar 

  25. Arvanitidis C, Zachariadis D, Vamvuka D (2004) Flue gas desulfurization at high temperatures: a review. Environ Eng Sci 21:525–547

    Article  Google Scholar 

  26. Shigeyuki U, Kobayashi T, Kojima T (2001) Desulfurization behavior of Ca-based absorbents under periodically changing condition between reducing and oxidizing atmosphere. Energy Convers Manage 42:2029

    Article  Google Scholar 

  27. Towler LG, Lynn LS, Fenouil LL (1994) Removal of H2S from coal-gas using limestone—kinetic considerations. Ind Eng Chem Res 33:265–272

    Article  Google Scholar 

  28. Lynn LS, Fenouil LL (1996) Kinetic and structural studies of calcium-based sorbents for high-temperature coal-gas desulfurization. Fuel Sci Technol Int 14:537–557

    Article  Google Scholar 

  29. Fujita S, Suzuki K, Mori T, Shibasaki Y (2003) A new technique to remove hydrogen chloride gas at high temperature using hydrogrossular. Ind Eng Chem Res 42:1023–1027

    Article  Google Scholar 

  30. Li YL, Wu YQ, Gao JS (2004) Study on a new type of HCI-removal agent for high-temperature cleaning of coal gas. Ind Eng Chem Res 43:1807–1811

    Article  Google Scholar 

  31. Verdone N, De Filippis P (2006) Reaction kinetics of hydrogen chloride with sodium carbonate. Chem Eng Sci 61:7487–7496

    Article  Google Scholar 

  32. Weinell CE, Jensen PI, Damjohansen K, Livbjerg H (1992) Hydrogen-chloride reaction with lime and limestone—kinetics and sorption capacity. Ind Eng Chem Res 31:164–171

    Article  Google Scholar 

  33. Dou BL, Gao JS, Sha XZ (2001) A study on the reaction kinetics of HCl removal from high-temperature coal gas. Fuel Process Technol 72:23–33

    Article  Google Scholar 

  34. Dou BL, Gao JS, Baek SW, Sha XH (2003) High-temperature HCl removal with sorbents in a fixed-bed reactor. Energy Fuel 17:874–878

    Article  Google Scholar 

  35. Dou BL, Chen BB, Gao JS, Sha XZ (2006) HCl removal and chlorine distribution in the mass transfer zone of a fixed-bed reactor at high temperature. Energy Fuel 20:959–963

    Article  Google Scholar 

  36. Duo W, Kirkby NF, Seville JPK, Kiel JHA, Bos A, DenUil H (1996) Kinetics of HCl reactions with calcium and sodium sorbents for IGCC fuel gas cleaning. Chem Eng Sci 51:2541–2546

    Article  Google Scholar 

  37. Nunokawa M, Kobayashi M, Akiho H (2008) Halide compound removal from hot gasification fuel gas with sodium based sorbent. Proceedings of the GCHT-7, June 23–25. Shoal Bay, Australia

  38. Stemmler M, Tamburro A, Müller M (2011) Laboratory investigations on chemical hot gas cleaning of inorganic trace elements for the “UNIQUE” process. Fuel. doi:10.1016/j.fuel.2011.05.027

  39. Kuramochi H, Wu W, Kawamoto K (2005) Prediction of the behaviors of H2S and HCl during gasification of selected residual biomass fuels by equilibrium calculation. Fuel 84:377–387

    Article  Google Scholar 

  40. Turn SQ (2007) Chemical equilibrium prediction of potassium, sodium, and chlorine concentrations in the product gas from biomass gasification. Ind Eng Chem Res 46:8928–8937

    Article  Google Scholar 

  41. Müller M, Wolf KJ, Fricke C, Hilpert K, Singheiser L (2005) Untersuchungen zur Alklireinigung bei der Zirkulierenden Druckaufgeladenen Wirbelschichtfeuerung der 2. Generation zur Minimierung des Risikos für Heißgaskorrosion. VBG PowerTech 5:99–102

    Google Scholar 

  42. Stemmler M, Müller M (2010) Theoretical evaluation of feedstock gasification using H2/C ratio and ROC as main input variables. Ind Eng Chem Res 49:9230–9237

    Article  Google Scholar 

  43. Porbatzki D, Stemmler M, Müller M (2011) Release of inorganic trace elements during gasification of wood, straw, and miscanthus. Biomass Bioenergy 35:S79–S86

    Article  Google Scholar 

  44. Stemmler M, Müller M (2011) Chemical hot gas cleaning concept for the “CHRISGAS” process. Biomass Bioenergy 35:S105–S115

    Article  Google Scholar 

  45. Zuberbühler U, Specht M, Bandi A (2005) Gasification of biomass—an overview on available technologies. 1st European Summer School on Renewable Motor Fuels, August 29–31. Birkenfeld, Germany

  46. Lee SHD, Johnson I (1980) Removal of gaseous alkali-metal compounds from hot flue-gas by particulate sorbents. J Eng Power-Trans ASME 102:397–402

    Article  Google Scholar 

Download references

Acknowledgments

The work described in this paper has been done in the framework of the “GreenSyngas” project and the “UNIQUE” project, both funded by the EC in the 7th framework program (contract numbers 213628 and 211517, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stemmler, M., Tamburro, A. & Müller, M. Thermodynamic modelling of fate and removal of alkali species and sour gases from biomass gasification for production of biofuels. Biomass Conv. Bioref. 3, 187–198 (2013). https://doi.org/10.1007/s13399-013-0073-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-013-0073-7

Keywords

Navigation