Skip to main content
Log in

Generalized expectation with general kernels on g-semirings and its applications

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The connection between probability and g-integral is investigated. The purposes of this paper are mainly to introduce the concept g-expectation with general kernels on a g-semiring, and then extend the Jensen type inequality in general form, thus refining the previous results in probability and measure theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agahi, H., Babakhani, A., Mesiar, R.: Pseudo-fractional integral inequality of Chebyshev type. Inf. Sci. 301, 161–168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agahi, H., Mesiar, R., Ouyang, Y.: Chebyshev type inequalities for pseudo-integrals. Nonlinear Anal. 72, 2737–2743 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bede, B., Regan, D.O’.: The theory of pseudo-linear operators. Knowl. Based Syst. 38, 19–26 (2013)

  4. Breckner, W.W.: Stetigkeitsaussagen fiir eine Klasse verallgemeinerter convexer funktionen in topologischen linearen Raumen. Pupl. Inst. Math. 23, 13–20 (1978)

    MATH  Google Scholar 

  5. Dragomir, S.S.: A new refinement of Jensen’s inequality in linear spaces with applications. Math. Comput. Model. 52, 1497–1505 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farenick, D.R., Zhou, F.: Jensen’s inequality relative to matrix-valued measures. J. Math. Anal. Appl. 327, 919–929 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grobler, J.: Jensen’s and martingale inequalities in Riesz spaces. Indag. Math. 25, 275–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hamm, A.: Uncertain dynamical systems defined by pseudomeasures. J. Math. Phys. 38(6), 3081–3109 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kolokoltsov, V.N., Maslov, V.P.: Idempotent analysis and its applications. Kluwer Academic Publishers, Dordrecht, Boston, London (1997)

    Book  MATH  Google Scholar 

  10. Kaluszka, M., Okolewski, A., Boczek, M.: On the Jensen type inequality for generalized Sugeno integral. Inf. Sci. 266, 140–147 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khan, M.A., Khan, G.A., Ali, T., Kilicman, A.: On the refinement of Jensen’s inequality. Appl. Math. Comput. 262, 128–135 (2015)

    MathSciNet  Google Scholar 

  12. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

  13. Kuich, W.: Semirings languages automata. Springer-Verlag, Berlin (1986)

    Book  MATH  Google Scholar 

  14. Leorato, S.: A refined Jensen’s inequality in Hilbert spaces and empirical approximations. J. Multivar. Anal. 100, 1044–1060 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lerner, V.S.: The boundary value problem and the Jensen inequality for an entropy functional of a Markov diffusion process. J. Math. Anal. Appl. 353, 154–160 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Niculescu, C.P., Persson, L.-E.: Convex functions and their applications. A Contemporary Approach, Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  17. Maslov, L.E., Samborskij, L.E. (eds.): Idempotent analysis. Advances in Soviet Mathematics, vol. 13. Amer. Math. Soc., Providence (1992)

  18. Merkle, M.: Jensen’s inequality for medians. Stat. Probab. Lett. 71, 277–281 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Merkle, M.: Jensen’s inequality for multivariate medians. J. Math. Anal. Appl. 370, 258–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mesiar, R., Pap, E.: Idempotent integral as limit of \(g\)-integrals. Fuzzy Sets Syst. 102, 385–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pap, E.: An integral generated by decomposable measure. Univ. Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 20(1), 135–144 (1990)

  22. Pap, E.: Applications of the generated pseudo-analysis on nonlinear partial differential equations. In: Litvinov, G.L., Maslov, V.P. (eds.) Contemporary Mathematics, vol. 377, American Mathematical Society, Providence, Rhode, Island (2005)

  23. Pap, E.: \(g\)-Calculus. Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 23(1), 145–156 (1993)

  24. Pap, E.: Pseudo-analysis as a mathematical base for soft computing. Soft Comput. 1, 61–68 (1997)

    Article  Google Scholar 

  25. Pap, E.: Pseudo-additive measures and their applications. In: Pap, E. (ed.) Handbook of measure theory, pp. 1403–1468. North-Holland, Elsevier, Amsterdam (2002)

  26. Pap, E., Ralević, N.: Pseudo-Laplace transform. Nonlinear Anal. 33, 553–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pap, E., Štajner, I.: Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, optimization, system theory. Fuzzy Sets Syst. 102, 393–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pap, E., Štajner, I.: Pseudo-\(L^{p}\) space and convergence. Fuzzy Sets Syst. 238, 113–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pap, E., Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral. Inf. Sci. 180, 543–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Román-Flores, H., Flores-Franulič, A., Chalco-Cano, Y.: A Jensen type inequality for fuzzy integrals. Inf. Sci. 177(15), 3192–3201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Štrboja, M., Grbić, T., Štajner-Papuga, I., Gruji ć, G., Medić, S.: Jensen and Chebyshev inequalities for pseudo-integrals of set-valued functions. Fuzzy Sets Syst. 222, 18–32 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Thesis, Tokyo Institute of Technology (1974)

  33. Terán, P.: Jensen’s inequality for random elements in metric spaces and some applications. J. Math. Anal. Appl. 414, 756–766 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Z., Klir, G.J.: Generalized measure theory. Springer, Boston (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Editor and to the anonymous reviewers for many helpful suggestions and discussions of the manuscript. The second author acknowledges the support of grant APVV-14-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamzeh Agahi.

Appendix

Appendix

Proof of Theorem 1.2

We use the inequality

$$\begin{aligned} \Psi \left( x\right) \geqslant \Psi \left( \rho \right) +\Psi ^{\prime }\left( \rho \right) \left( x-\rho \right) \end{aligned}$$
(5.1)

for any \(x,\rho \in I\) which follows from convexity of \(\Psi \). Multiplying both sides of (5.1) by \(k\left( \omega _{1},\omega _{2}\right) \), we have

$$\begin{aligned} k\left( \omega _{1},\omega _{2}\right) \Psi \left( x\right) \geqslant k\left( \omega _{1},\omega _{2}\right) \Psi \left( \rho \right) +k\left( \omega _{1},\omega _{2}\right) \Psi ^{\prime }\left( \rho \right) \left( x-\rho \right) . \end{aligned}$$
(5.2)

We set \(x=X\left( \omega _{2}\right) \) and \(A_{\mathbf {id}}^{k,\Omega _{2}} \left[ X\right] (\omega _{1})=\frac{1}{K_{\mathbf {id}}^{\Omega _{2}}(\omega _{1})}\int \nolimits _{\Omega _{2}}\left( k\left( \omega _{1},\omega _{2}\right) X\left( \omega _{2}\right) \right) d\mu _{2}\left( \omega _{2}\right) =\rho \) and integrate over the domain \(G=\left\{ \omega _{2}\in \Omega _{2}:X\left( \omega _{2}\right) \ne 0\right\} .\) Then

$$\begin{aligned}&\int \limits _{G}k\left( \omega _{1},\omega _{2}\right) \Psi \left[ X\left( \omega _{2}\right) \right] d\mu _{2}\left( \omega _{2}\right) \overset{}{\geqslant } \Psi \left( \rho \right) \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \\&\qquad +\;\Psi ^{\prime }\left( \rho \right) \left( \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) X\left( \omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) -\rho \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \right) \\&\quad \overset{}{=}\Psi \left( \rho \right) \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) +\rho \Psi ^{\prime }\left( \rho \right) \\&\qquad \times \;\left( \int \limits _{\Omega _{2}}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) -\int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \right) , \end{aligned}$$

which gets the desired inequality

$$\begin{aligned}&\int \limits _{\Omega _{2}}k\left( \omega _{1},\omega _{2}\right) \Psi \left[ X\left( \omega _{2}\right) \right] d\mu _{2}\left( \omega _{2}\right) \\&\quad \overset{}{\geqslant }\Psi \left( \rho \right) \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) +\left( \rho \Psi ^{\prime }\left( \rho \right) +\Psi \left( 0\right) \right) \left( \int \limits _{G^{c}}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \right) . \end{aligned}$$

This completes the proof. \(\square \)

Proof of Theorem 1.4

. Using (5.2), set \( x=X\left( \omega _{2}\right) \) and

$$\begin{aligned} \mathfrak {A}_{\mathbf {id}}^{k,\Omega _{2}}\left[ X\right] (\omega _{1})=\int \limits _{\Omega _{2}}k\left( \omega _{1},\omega _{2}\right) X\left( \omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) =\rho \end{aligned}$$

and integrate over the domain \(G=\left\{ \omega _{2}\in \Omega _{2}:X\left( \omega _{2}\right) \ne 0\right\} .\) Then

$$\begin{aligned}&\int \limits _{G}k\left( \omega _{1},\omega _{2}\right) \Psi \left( X\left( \omega _{2}\right) \right) d\mu _{2}\left( \omega _{2}\right) \overset{}{\geqslant } \Psi \left( \rho \right) \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \\&\qquad +\;\Psi ^{\prime }\left( \rho \right) \left( \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) X\left( \omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) -\rho \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \right) \\&\quad \overset{}{=}\Psi \left( \rho \right) \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \\&\qquad +\;\Psi ^{\prime }\left( \rho \right) \left( \int \limits _{\Omega _{2}}k\left( \omega _{1},\omega _{2}\right) X\left( \omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) -\rho \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \right) \\&\quad \overset{}{=}\Psi \left( \rho \right) \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) +\rho \Psi ^{\prime }\left( \rho \right) \left( 1-\int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \right) . \end{aligned}$$

So,

$$\begin{aligned}&\int \limits _{\Omega _{2}}k\left( \omega _{1},\omega _{2}\right) \Psi \left( X\left( \omega _{2}\right) \right) d\mu _{2}\left( \omega _{2}\right) \overset{}{\geqslant }\Psi \left( \rho \right) \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \\&\quad +\;\Psi ^{\prime }\left( \rho \right) \int \limits _{\Omega _{2}}k\left( \omega _{1},\omega _{2}\right) X\left( \omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) -\rho \Psi ^{\prime }\left( \rho \right) \int \limits _{G}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) \\&\quad +\;\Psi \left( 0\right) \int \limits _{G^{c}}k\left( \omega _{1},\omega _{2}\right) d\mu _{2}\left( \omega _{2}\right) . \end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agahi, H., Mesiar, R. & Babakhani, A. Generalized expectation with general kernels on g-semirings and its applications. RACSAM 111, 863–875 (2017). https://doi.org/10.1007/s13398-016-0322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-016-0322-2

Keywords

Mathematics Subject Classification

Navigation