Skip to main content
Log in

Abstract

In this paper we summarize the main features of vakonomic mechanics (or constrained variational calculus), both from continuous and discrete points of views. In the continuous case, we focus ourselves on Lagrangian systems defined by the following data: a Riemannian metric (kinetic term) and constraints linear on the velocities. We show that, for such kind of systems, it is possible to find an explicit Hamiltonian description. For the numerical setting, we describe two methods to design geometric integrators, first, applying discrete variational calculus to a discretization of the continuous vakonomic problem or, second, applying standard symplectic integration to the Hamiltonian description of the initial vakonomic system. We show that, in a particular case, both constructions match exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, R., Marsden, J.E.: Foundations of Mechanics, Advanced Book Program (1978)

  2. Gotay M., Nester J.: Presymplectic Lagrangian systems. The constraint algorithm and the equivalence theorems. Ann. I.H.P. Phys. Theor. 30, 129–142 (1979)

    MathSciNet  MATH  Google Scholar 

  3. Colombo L., Martín de Diego D., Zuccalli M.: Optimal control of underactuated mechanical systems: a geometric approach. J. Math. Phys. 51, 083519 (2010)

    Article  MathSciNet  Google Scholar 

  4. Martínez S., Cortés J., de León M.: The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems. The vakonomic bracket. J. Math. Phys. 41, 2090–2120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold V.: Dynamical Systems, vol. III. Springer, New York (1988)

    Google Scholar 

  6. Marsden J.E., West M.: Discrete Mechanics and Variational Integrators, Acta Numerica, pp. 357–514. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  7. Benito R., Martín de Diego D.: Discrete vakonomic mechanics. J. Math. Phys. 46, 083521 (2005)

    Article  MathSciNet  Google Scholar 

  8. Koslov, V.V.: Realization of nonintegrable constraints in classical mechanics. Dokl. Akad. Nauk SSSR 272(3), 550–554 (1983) (Russian); English transl: Sov. Phys. Dokl. 29(9), 735–737 (1983)

  9. Hairer E., Lubich C., Wanner G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. Springer, Berlin (2002)

    MATH  Google Scholar 

  10. Tulczyjew W.M.: Les sous-variétés lagrangiennes et la dynamique hamiltonienne (Série A). C. R. Acad. Sci. Paris 283, 15–18 (1976)

    MathSciNet  MATH  Google Scholar 

  11. Tulczyjew W.M.: Les sous-variétés lagrangiennes et la dynamique lagrangienne (Série A). C. R. Acad. Sci. Paris 283, 675–678 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Jiménez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiménez, F., de Diego, D.M. Continuous and discrete approaches to vakonomic mechanics. RACSAM 106, 75–87 (2012). https://doi.org/10.1007/s13398-011-0028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-011-0028-4

Keywords

Mathematics Subject Classification (2000)

Navigation